A modeling-language based approach to automatically recommend optimization methods

Sofiane Tanji

ICTEAM/INMA Université catholique de Louvain

Joint work with François Glineur (UCLouvain)

ISMP 2024 | Tuesday, July 23, 2024

Talk Outline

1. Motivation and context

2. Step 1 : Modeling language

3. Step 2 : Literature representation

4. Step 3 : Problem reducibility

5. Step 4 : Ranking of methods

6. Conclusions

Motivating example: LASSO regression

Consider $X \in \mathbb{R}^{n \times d}$, $y \in \mathbb{R}^{n}$, λ_{1} , λ_{2} , $\lambda_{3} \in \mathbb{R}_{+}^{*}$. LASSO regression solves:

$$\hat{\beta} \in \arg\min_{\beta \in \mathbb{R}^d} \left\{ \frac{1}{2} \|y - X\beta\|^2 + \lambda_1 \|\beta\|_1 \right\}, \qquad (\text{nonsmooth convex})$$

or equivalently,

$$\hat{\beta} \in \arg\min_{\beta \in \mathbb{R}^d} \left\{ \frac{1}{2} \|y - X\beta\|^2 \text{ subject to } \|\beta\|_1 \le \lambda_2 \right\}$$
(QP)

or equivalently,

$$\hat{\beta} \in \arg\min_{\beta \in \mathbb{R}^d} \left\{ \|\beta\|_1 \text{ subject to } \|y - X\beta\|^2 \le \lambda_3 \right\}$$
(SOCP)

For each formulation, you can use many different methods:

Formulation	Some applicable methods
nonsmooth convex	coordinate descent, subgradient method, proximal gradient
convex QPs	augmented Lagrangian, interior-point methods
SOCPs	interior-point methods

Research Questions

- Q1. Where to find all methods applicable to a given formulation ?
- Q2. How to find equivalent reformulations?
- Q3. How to find most efficient (formulation, method) combinations ?

What optimization problems usually look like

Consider any optimization problem in the black-box form:

$$\min_{x} f(x) \tag{1}$$

where f is decomposed into simpler components f_i , for example:

$$f(x) = f_1(x) + f_2 \circ f_3(x) + \sum_{j=1}^n f_4^j(x) - \max_{j=1,\dots,n} f_5^j(x)$$
(2)

with

- possible assumptions on the f_i's (convexity, Lipschitz continuity, etc.)
- access to certain oracles for each f_i (subgradient, proximal operator, etc.)

What you can find in the literature

Theorem: Worst-case convergence rate of Algorithm 1

Suppose assumptions $\{(A1), (A2), (A3)\} = \mathcal{A}$ hold. Consider some initial conditions \mathcal{I} . Then, Algorithm 1 with parameters \mathcal{P} applied to Problem (1) satisfies for all $k \ge 1$

$$F(x_k) - F(x^*) \le \varphi(k, \mathcal{A}, \mathcal{I}, \mathcal{P})$$
(3)

Existing results (always) have

- Some template optimization problem (in red)
- The considered optimization method (in purple)
- A rate of convergence (in green)

In this talk

We present Optimization Methods Ranking Assistant (OMRA)

- A modeling language to describe optimization problems
- An encoding of existing results in the literature
- Detection of methods applicable to user-provided problems
- Ranking of applicable methods by worst-case performance

4. Problem reduction

Related work

Encode mathematical knowledge

Lean proof assistant¹, Linnaeus²

Representing optimization in standard form for computer analysis

- Modeling languages: AMPL, GAMS, YALMIP, JuMP, CVX etc.
- ▶ IQC³ and PEP analysis⁴

Choosing the best algorithm to solve an optimization problem

▶ Benchopt⁵: benchmarking of optimization algorithms

³Lessard, Recht, and Packard, "Analysis and design of optimization algorithms via integral quadratic constraints".

⁴Taylor, Hendrickx, and Glineur, "Smooth strongly convex interpolation and exact worst-case performance of first-order methods".

⁵Moreau et al., "Benchopt: Reproducible, efficient and collaborative optimization benchmarks".

¹De Moura et al., "The Lean theorem prover".

²Zhao, Lessard, and Udell, "An automatic system to detect equivalence between iterative algorithms".

Talk Outline

How to write it in OMRA

Problem	1
	2
$\min_{\mathbf{x}\in\mathbb{R}^{n}}f(\mathbf{x})$ (5)	4
Х <i>С</i> И.	5
where	6
▶ $f : \mathbb{R}^n \to \mathbb{R}$ is convex,	7
► f is L_f -smooth with $L_f \in]0, 10[,$	8
f is available through a	9
first-order oracle $x \to \nabla f(x)$.	

pb = Problem() Rn = pb.declare_space("Rn") $R = pb.declare_space("R", 1)$ $f = pb.declare_function("f", Rn, R)$ $x = pb.declare_variable("x", Rn)$ f.add_property(Convex()) f.add_property(Smooth(0, 10.)) pb.set_objective(f(x)) pb.declare_oracle(Derivative(f))

Talk Outline

ABCs of encoding the literature

Claim: All convergence theorems have the following form

Theorem: Worst-case convergence rate of Algorithm 1

Suppose assumptions $\mathcal{A} = \{A1, A2, A3\}$ hold. Consider initial conditions \mathcal{I} . Then, Algorithm 1 with parameters \mathcal{P} applied to Problem (1) satisfies for all $k \ge 1$

 $F(x_k) - F(x^*) \le \varphi(k, \mathcal{A}, \mathcal{I}, \mathcal{P})$ (6)

meaning we have to encode three elements

- Template problem (in red)
- Method parameters (in purple)
- Convergence rate (in green)

Elements to encode the literature

Template problem

✓ Just an optimization problem !

Convergence rate

Optimization method

- Enough to encode the parameters !
- Dependence of parameters to unknown quantities

First answer!

Research Questions

- ✓ Where to find all methods applicable to a given formulation ?
- Q2. How to find equivalent reformulations?
- Q3. How to find most efficient (formulation, method) combinations?

Answer to Q1

- Results are scattered in the literature
- We aggregated many existing results in OMRA (and we'll keep doing so)

Talk Outline

4. Problem reduction

Figure: Optimization Problem P

Figure: Optimization Problem P

Figure: Optimization Problem P

Figure: Optimization Problem P

Figure: Optimization Problem P

Scenario 2 : reformulations

We need to match user-provided problems to templates.

- ✓ Ideal scenario is immediate match of user-provided problem to template.
- Solution otherwise: use *mathematical results and reformulation tricks* !

Mathematical results:

- Sum of smooth (resp. convex) functions is smooth (resp. convex),
- Proximal operator of $f \circ A$ is computable given $prox_f$, A and A^* ...

Reformulation tricks:

- ► Commutativity of operators,
- losing structure,
- regrouping terms,
- ► transfer of conditioning ...

Reformulation example

Commutativity of the sum operator

Losing structure

Transfer of conditioning

Research Questions

- \checkmark Where to find all methods applicable to a given formulation ?
- ✓ How to find equivalent reformulations ?

Q3. How to find most efficient (formulation, method) combinations?

Answer to Q2

Apply reformulation tricks on the original problem

Talk Outline

So far: from a user-provided problem, we get a list of (Template, Method, Rate) Goal:

Q3. How to find most efficient (template, method) combinations?

Our ranking criterion:

The convergence rate associated to each (template, method) combination

How to deal with sophisticated rate functions

Example: Convergence rate of fixed-step (γ) GD for f convex and L-smooth

$$f(x_N) - f_* \leq \frac{L}{2} \frac{\|x_0 - x^*\|^2}{1 + \gamma L \min\left\{2N, \frac{-1 + (1 - \gamma L)^{-2N}}{\gamma L}\right\}}$$

- 1. Compute rates numerically whenever possible
- 2. Drop asymptotically worse methods if high iteration budget
- 3. Compare leading coefficients whenever possible
- 4. Sampling method

Research questions

Remember the research questions

- ✓ Where to find all methods applicable to a given formulation ?
- ✓ How to find equivalent reformulations ?
- ✓ How to find most efficient (formulation, method) combinations ?

Here are some answers

- A1. Query the knowledge database of OMRA.
- A2. Apply standard reformulation to tree representation of a problem
- A3. Rank the rates associated to matched (template, method) pairs

Conclusions

Contribution: a principled approach and its Python implementation, OMRA

- Modeling language to describe your optimization problem
- Automatic computation of equivalent reformulations
- Matching reformulations to known templates
- Retrieve methods applicable to above templates
- Retrieve known worst-case convergence rates
- Guess best performing method using retrieved rates

Next steps

► *Make this encyclopedia available through a website* (very soon) Enrich the toolbox

- Aggregate more results in the database
- Add reformulation techniques (η -trick, duality (for the LASSO example))
- ► Include "numerical" PEP results in the database

User features

- Identification of settings for which a method performs above average
- Code generation for recommended methods

Thank you again for your attention!

Questions?

Do not hesitate to contact me:

- \rightarrow sofiane.tanji@uclouvain.be
- \rightarrow https://sofianetanji.com