A modeling-language based approach to automatically recommend optimization methods

Sofiane Tanji

ICTEAM/INMA Université catholique de Louvain

Joint work with François Glineur (UCLouvain)

INFORMS Annual Meeting 2024 | Sunday, October 20, 2024

Motivating example: LASSO regression

Consider $X \in \mathbb{R}^{n \times d}$, $y \in \mathbb{R}^{n}$, λ_{1} , λ_{2} , $\lambda_{3} \in \mathbb{R}_{+}^{*}$. LASSO regression solves:

$$\hat{\beta} \in \arg\min_{\beta \in \mathbb{R}^d} \left\{ \frac{1}{2} \|y - X\beta\|^2 + \lambda_1 \|\beta\|_1 \right\}, \qquad (\text{nonsmooth convex})$$

or equivalently,

$$\hat{\beta} \in \arg\min_{\beta \in \mathbb{R}^d} \left\{ \frac{1}{2} \|y - X\beta\|^2 \text{ subject to } \|\beta\|_1 \le \lambda_2 \right\}$$
(QP)

or equivalently,

$$\hat{\beta} \in \arg\min_{\beta \in \mathbb{R}^d} \left\{ \|\beta\|_1 \text{ subject to } \|y - X\beta\|^2 \le \lambda_3 \right\}$$
(SOCP)

For each formulation, you can use many different methods:

Some applicable methods
coordinate descent, subgradient method, proximal gradient
splitting methods, active-set methods
augmented lagrangian, splitting methods

Four steps approach

- So. Gather methods with associated complexity results
- S1. *Match* a given formulation with all applicable methods
- S2. *Reformulate* a given problem to find equivalent formulations
- S3. Compare complexity results of (formulation, method) combinations

In this talk

We present the Optimization Methods Ranking Assistant (OMRA)

- A repository of convergence results existing in the literature
- A modeling language to describe optimization problems
- Detection of methods applicable to user-provided problems
- Comparison of applicable methods by worst-case performance
- ▶ all of this framed in a Python toolbox.

Pipeline

Outline

Four steps approach

So. Gather methods with associated complexity results

S1. *Match* a given formulation with all applicable methods

S2. *Reformulate* a given problem to find equivalent formulations

S3. Compare complexity results of (formulation, method) combinations

Setting : What optimization problems usually look like

Consider any optimization problem in the black-box form:

$$\min_{x} f(x) \tag{1}$$

where f is decomposed into simpler components f_i , for example:

$$f(x) = f_1(x) + f_2 \circ f_3(x) + \sum_{j=1}^n f_4^j(x) - \max_{j=1,\dots,n} f_5^j(x)$$
(2)

with

- possible assumptions on the f_i's (convexity, Lipschitz continuity, etc.)
- ▶ f_i can also correspond to "atom functions": ℓ_1 -norm ...
- access to certain oracles for each f_i (subgradient, proximal operator, etc.)

Example of what you can find in the literature

Theorem: Worst-case convergence rate of Fast Proximal Gradient Method

Take $f : \mathbb{R}^n \to \mathbb{R}$ *L*-smooth and convex and $h : \mathbb{R}^m \to \mathbb{R}$ closed, proper, convex. Suppose $||x_0 - x_*|| \le R$. Then, the Fast Proximal Gradient Method with stepsize $\frac{1}{L}$ applied to minimizing F(x) = f(x) + h(x) satisfies for all $n \ge 1$:

$$F(x_n) - F(x_*) \le \frac{2L}{n^2 + 5n + 2} ||x_0 - x_*||^2$$
(3)

Complexity results follow the same skeleton

Theorem: Worst-case convergence rate of Algorithm 1

Suppose assumptions $\{(A1), (A2), (A3)\} = \mathcal{A}$ hold. Consider some initial conditions \mathcal{I} . Then, Algorithm 1 with parameters \mathcal{P} applied to Problem (1) satisfies for all $k \ge 1$

$$F(x_k) - F(x^*) \le \varphi(k, \mathcal{A}, \mathcal{I}, \mathcal{P})$$
(4)

Existing results (always) have

- Some template optimization problem (in red)
- The considered optimization method (in purple)
- A rate of convergence (in green)

Elements to encode known complexity results

Template problem

This is just an optimization problem (use a modeling language)
 Optimization method

- Enough to encode the parameters.
- > Dependence of method parameters to template parameters

Convergence rate

Outline

Four steps approach

So. Gather methods with associated complexity results

S1. *Match* a given formulation with all applicable methods

S2. *Reformulate* a given problem to find equivalent formulations

S3. Compare complexity results of (formulation, method) combinations

How to write an optimization problem in OMRA

Problem

$$\min_{x\in\mathbb{R}^n} f(x) + g(A(x))$$
 (5)

where

- ► $f : \mathbb{R}^n \to \mathbb{R}$ is convex, *L*_f-smooth. Access to ∇f .
- ▶ $g : \mathbb{R}^m \to \mathbb{R}$ is convex. Access to *prox*_g.
- ► $A : \mathbb{R}^n \to \mathbb{R}^m$ is a linear mapping with $||A|| \le M$. Access to $x \to Ax$.

pb = Problem() x = pb.declare_variable("x", Rn) $f = pb.declare_function("f", Rn, R)$ g = pb.declare_function("g", Rm, R) $A = pb.declare_function("A", Rn, Rm)$ pb.set_objective(f(x) + g(A(x))) f.add_property(Convex()) f.add_property(Smooth(0, 10.)) g.add_property(Convex()) A.add_propertv(Linear(10.)) pb.declare_oracle(Derivative(f)) pb.declare_oracle(Proximal(g)) pb.declare_oracle(Evaluation(A))

Optimization problem as a Directed Acyclic Graph

Optimization problem as a Directed Acyclic Graph

Optimization problem as a Directed Acyclic Graph

f(x) + g(x)f(x) + g(x)f(x) + g(x)+ + f(x)g(x)f(x)g(x)@ @ @ @ $f f' \in \partial f$ Х $g \nabla g$ $f f' \in \partial f$ X g X ∇g Х Strongly convex *L*-smooth Convex *L*-smooth Optimization Template T Optimization Problem P

Outline

Four steps approach

So. Gather methods with associated complexity results

S1. *Match* a given formulation with all applicable methods

S2. *Reformulate* a given problem to find equivalent formulations

S3. Compare complexity results of (formulation, method) combinations

Scenario 2 : reformulations

We need to match user-provided problems to templates.

- ✓ Ideal scenario is immediate match of user-provided problem to template.
- ► Solution otherwise: use *mathematical results and reformulation tricks* !

Mathematical results:

- Sum of smooth (resp. convex) functions is smooth (resp. convex),
- ► Proximal operator of $f + \gamma ||x||^2$ is computable given $prox_f$...

Reformulation tricks:

- ► Commutativity of operators,
- losing structure and regrouping terms,
- transfer of curvature (parametrized reformulation),
- computing oracles as a subproblem (parametrized reformulation) ...

Reformulation example

Commutativity of the sum operator

Losing structure

Transfer of curvature

Outline

So far: from a user-provided problem, we get a list of (Template, Method, Rate)

So. *Gather* methods with associated complexity results

S1. *Match* a given formulation with all applicable methods

S2. *Reformulate* a given problem to find equivalent formulations

S3. Compare complexity results of (formulation, method) combinations

Our ranking criterion:

The convergence rate associated to each (template, method) combination (× *the computational cost per iteration*)

How to deal with sophisticated rate functions

Example: Convergence rate of fixed-step (γ) GD for f convex and L-smooth

$$f(x_N) - f_* \leq \frac{L}{2} \frac{\|x_0 - x^*\|^2}{1 + \gamma L \min\left\{2N, \frac{-1 + (1 - \gamma L)^{-2N}}{\gamma L}\right\}}$$

- 1. Compute rates numerically whenever possible
- 2. Drop asymptotically worse methods if high iteration budget
- 3. Compare leading coefficients whenever possible
- 4. Sampling method

Conclusions

Contribution: a principled approach to compare optimization methods and its Python implementation, OMRA

 Large repository of known results in the form (Template, Method, Convergence Rate)

► Make this encyclopedia available through a website (very soon)

Make the toolbox richer

- Aggregate more results in the database
- Add reformulation techniques (η -trick, duality (for the LASSO example))

User features

Code generation for recommended methods

Thank you again for your attention!

Questions?

Do not hesitate to contact me:

- \rightarrow sofiane.tanji@uclouvain.be
- \rightarrow https://sofianetanji.com

Preliminary results: Equivalent templates

Problem: Additive composite template

$$\min_{x \in \mathbb{R}^n} f(x) + g(x) \tag{6}$$

where

- ► $f : \mathbb{R}^n \to \mathbb{R}$ is μ_f -convex, L_f -smooth. Access to ∇f .
- ▶ $g : \mathbb{R}^n \to \mathbb{R}$ is μ_g -convex, L_g -smooth. Access to *prox*_g.

Problem: Difference of convex template

$$\min_{x\in\mathbb{R}^n}\varphi_1(x)-\varphi_2(x) \qquad (7)$$

where

• $\varphi_1 : \mathbb{R}^n \to \mathbb{R}$ is convex, L_{φ_1} -smooth. Access to $\nabla \varphi_1$.

•
$$\varphi_2 : \mathbb{R}^n \to \mathbb{R}$$
 is convex.
Access to $\nabla \varphi_2$.

Through the sequence of (implemented) transformations

$$f(x) + g(x) = g(x) + f(x) (Commutativity of the sum operator)$$
(8)

$$= (g(x) + \gamma ||x||^{2}) + (f(x) - \gamma ||x||^{2}) (Transfer of curvature)$$
(9)

$$= (g(x) + \gamma ||x||^{2}) - (\gamma ||x||^{2} - f(x)) (plus = minus minus)$$
(10)

$$= \varphi_{1} - \varphi_{2}.$$
(11)

- Properties: Depending on the parameter γ , we can make φ_1 , φ_2 convex.
- Having *prox*_g and ∇f , we can compute $\nabla \varphi_1$, $\nabla \varphi_2$.

Full matching algorithm

```
class Problem:
  Γ...]
  def compute_reformulations(self):
    visited = set()
    queue = [self.objective]
    while len(queue):
        current_tree = queue.pop(0)
        for g in TRANSFORMATIONS:
            for new_tree in current_tree.transform(g):
                if new tree not in visited:
                    visited.add(new_tree)
                    queue.append(new_tree)
    return set(list(visited))
```