
Amodeling-language based approach to
automatically recommend optimization methods

Sofiane Tanji

ICTEAM/INMA
Université catholique de Louvain

Joint work with François Glineur (UCLouvain)

INFORMS Annual Meeting 2024 | Sunday, October 20, 2024

Motivating example: LASSO regression
Consider X ∈ ℝn×d, y ∈ ℝn, 𝜆1, 𝜆2, 𝜆3 ∈ ℝ∗

+. LASSO regression solves:

𝛽 ∈ arg min
𝛽∈ℝd

{
1
2
∥y − X𝛽 ∥2 + 𝜆1∥𝛽 ∥1

}
, (nonsmooth convex)

or equivalently,

𝛽 ∈ arg min
𝛽∈ℝd

{
1
2
∥y − X𝛽 ∥2 subject to ∥𝛽 ∥1 ≤ 𝜆2

}
(QP)

or equivalently,

𝛽 ∈ arg min
𝛽∈ℝd

{
∥𝛽 ∥1 subject to ∥y − X𝛽 ∥2 ≤ 𝜆3

}
(SOCP)

1 / 22

For each formulation, you can use many different methods:

Formulation Some applicable methods

nonsmooth convex coordinate descent, subgradient method, proximal gradient ...
convex QPs splitting methods, active-set methods

SOCPs augmented lagrangian, splitting methods

Four steps approach
S0. Gathermethods with associated complexity results
S1. Match a given formulation with all applicable methods
S2. Reformulate a given problem to find equivalent formulations
S3. Compare complexity results of (formulation, method) combinations

2 / 22

In this talk
We present the Optimization Methods Ranking Assistant (OMRA)
▶ A repository of convergence results existing in the literature
▶ Amodeling language to describe optimization problems
▶ Detection of methods applicable to user-provided problems
▶ Comparison of applicable methods by worst-case performance
▶ all of this framed in a PYTHON toolbox.

Pipeline

User
problem

Set of
templates

Applicable
methods

Associated
rates

Ranking of
methods

Literature representationModeling language Main output

Problem reduction

3 / 22

Outline

Four steps approach

S0. Gathermethods with associated complexity results

S1. Match a given formulation with all applicable methods

S2. Reformulate a given problem to find equivalent formulations

S3. Compare complexity results of (formulation, method) combinations

Setting : What optimization problems usually look like
Consider any optimization problem in the black-box form:

min
x
f (x) (1)

where f is decomposed into simpler components fi, for example:

f (x) = f1(x) + f2 ◦ f3(x) +
n∑︁
j=1

f j4(x) − max
j=1,...,n

f j5(x) (2)

with
▶ possible assumptions on the fi’s (convexity, Lipschitz continuity, etc.)
▶ fi can also correspond to "atom functions": ℓ1-norm . . .

▶ access to certain oracles for each fi (subgradient, proximal operator, etc.)
4 / 22

Example of what you can find in the literature

Theorem: Worst-case convergence rate of Fast Proximal Gradient Method

Take f : ℝn → ℝ L-smooth and convex and h : ℝm → ℝ closed, proper,
convex. Suppose ∥x0 − x∗∥ ≤ R.
Then, the Fast Proximal Gradient Method with stepsize 1

L applied to mini-
mizing F(x) = f (x) + h(x) satisfies for all n ≥ 1:

F(xn) − F(x∗) ≤
2L

n2 + 5n + 2
∥x0 − x∗∥2 (3)

5 / 22

Complexity results follow the same skeleton

Theorem: Worst-case convergence rate of Algorithm 1

Suppose assumptions {(A1), (A2), (A3)} = A hold.
Consider some initial conditions I.
Then, Algorithm 1with parametersP applied to Problem (1) satisfies for all
k ≥ 1

F(xk) − F(x∗) ≤ 𝜑 (k,A,I,P) (4)

Existing results (always) have
▶ Some template optimization problem (in red)
▶ The considered optimization method (in purple)
▶ A rate of convergence (in green)

6 / 22

Elements to encode known complexity results
Template problem

✔ This is just an optimization problem (use a modeling language)
Optimizationmethod
▶ Enough to encode the parameters.
▶ Dependence of method parameters to template parameters

Convergence rate

Example: Convergence rate of FISTA with stepsize 1/L

F(xN) − F∗︸ ︷︷ ︸
performance measure

≤ 2L
n2 + 5n + 2

initial conditions︷ ︸︸ ︷
∥x0 − x∗∥2

with template parameter L andmethod parameter 1/L.
7 / 22

Outline

Four steps approach

S0. Gathermethods with associated complexity results

S1. Match a given formulation with all applicable methods

S2. Reformulate a given problem to find equivalent formulations

S3. Compare complexity results of (formulation, method) combinations

How to write an optimization problem in OMRA

Problem

min
x∈ℝn

f (x) + g(A(x)) (5)

where
▶ f : ℝn → ℝ is convex,

Lf-smooth. Access to ∇f.
▶ g : ℝm → ℝ is convex. Access

to proxg.
▶ A : ℝn → ℝm is a linear

mapping with ∥A∥ ≤ M.
Access to x → Ax.

pb = Problem()
x = pb.declare_variable("x", Rn)
f = pb.declare_function("f", Rn, R)
g = pb.declare_function("g", Rm, R)
A = pb.declare_function("A", Rn, Rm)
pb.set_objective(f(x) + g(A(x)))
f.add_property(Convex())
f.add_property(Smooth(0, 10.))
g.add_property(Convex())
A.add_property(Linear(10.))
pb.declare_oracle(Derivative(f))
pb.declare_oracle(Proximal(g))
pb.declare_oracle(Evaluation(A))

8 / 22

Optimization problem as a Directed Acyclic Graph

+

@ ◦

f x g @

A x

f (x) + g(A(x))

f (x) g(A(x))

A(x)

9 / 22

Optimization problem as a Directed Acyclic Graph
+

@ ◦

f x g @

A x

f (x) + g(A(x))

f (x) g(A(x))

A(x)

Convex and Lf-Smooth Convex

Linear and ∥A∥ ≤ M
9 / 22

Optimization problem as a Directed Acyclic Graph
+

@ ◦

f x g @

A x

f (x) + g(A(x))

f (x) g(A(x))

A(x)

Convex and Lf-Smooth Convex

Linear and ∥A∥ ≤ M

∇f proxg

x → Ax

9 / 22

Finding applicable methods means matching the
problem to a template

f (x) + g(x)

+ f (x) + g(x)

@ @

f x g x

f (x) g(x)

Strongly convex L-smooth

f′ ∈ 𝜕f ∇g

Optimization Problem P

f (x) + g(x)

+

@ @

f x g x

f (x) g(x)

Convex L-smooth

f′ ∈ 𝜕f ∇g

Optimization Template T
10 / 22

Finding applicable methods means matching the
problem to a template

f (x) + g(x)

+ f (x) + g(x)

@ @

f x g x

f (x) g(x)

Strongly convex L-smooth

f′ ∈ 𝜕f ∇g

Optimization Problem P

f (x) + g(x)

+

@ @

f x g x

f (x) g(x)

Convex L-smooth

f′ ∈ 𝜕f ∇g

Optimization Template T
10 / 22

Finding applicable methods means matching the
problem to a template

f (x) + g(x)

+ f (x) + g(x)

@@ @

f x g x

f (x) g(x)

Strongly convex L-smooth

f′ ∈ 𝜕f ∇g

Optimization Problem P

f (x) + g(x)

+

@@ @

f x g x

f (x) g(x)

Convex L-smooth

f′ ∈ 𝜕f ∇g

Optimization Template T
10 / 22

Finding applicable methods means matching the
problem to a template

f (x) + g(x)

+ f (x) + g(x)

@@ @

ff x g x

f (x) g(x)

Strongly convex L-smooth

f′ ∈ 𝜕f ∇g

Optimization Problem P

f (x) + g(x)

+

@@ @

ff x g x

f (x) g(x)

Convex L-smooth

f′ ∈ 𝜕f ∇g

Optimization Template T
10 / 22

Finding applicable methods means matching the
problem to a template

f (x) + g(x)

+ f (x) + g(x)

@@ @

ff xx g x

f (x) g(x)

Strongly convex L-smooth

f′ ∈ 𝜕f ∇g

Optimization Problem P

f (x) + g(x)

+

@@ @

ff xx g x

f (x) g(x)

Convex L-smooth

f′ ∈ 𝜕f ∇g

Optimization Template T
10 / 22

Finding applicable methods means matching the
problem to a template

f (x) + g(x)

+ f (x) + g(x)

@@ @@

ff xx g x

f (x) g(x)

Strongly convex L-smooth

f′ ∈ 𝜕f ∇g

Optimization Problem P

f (x) + g(x)

+

@@ @@

ff xx g x

f (x) g(x)

Convex L-smooth

f′ ∈ 𝜕f ∇g

Optimization Template T
10 / 22

Finding applicable methods means matching the
problem to a template

f (x) + g(x)

+ f (x) + g(x)

@@ @@

ff xx gg x

f (x) g(x)

Strongly convex L-smooth

f′ ∈ 𝜕f ∇g

Optimization Problem P

f (x) + g(x)

+

@@ @@

ff xx gg x

f (x) g(x)

Convex L-smooth

f′ ∈ 𝜕f ∇g

Optimization Template T
10 / 22

Finding applicable methods means matching the
problem to a template

f (x) + g(x)

+ f (x) + g(x)

@@ @@

ff xx gg xx

f (x) g(x)

Strongly convex L-smooth

f′ ∈ 𝜕f ∇g

Optimization Problem P

f (x) + g(x)

+

@@ @@

ff xx gg xx

f (x) g(x)

Convex L-smooth

f′ ∈ 𝜕f ∇g

Optimization Template T
10 / 22

Outline

Four steps approach

S0. Gathermethods with associated complexity results

S1. Match a given formulation with all applicable methods

S2. Reformulate a given problem to find equivalent formulations

S3. Compare complexity results of (formulation, method) combinations

Scenario 2 : reformulations
We need to match user-provided problems to templates.

✔ Ideal scenario is immediate match of user-provided problem to template.
▶ Solution otherwise: usemathematical results and reformulation tricks !

Mathematical results:
▶ Sum of smooth (resp. convex) functions is smooth (resp. convex),
▶ Proximal operator of f +𝛾 ∥x∥2 is computable given proxf ...

Reformulation tricks:
▶ Commutativity of operators,
▶ losing structure and regrouping terms,
▶ transfer of curvature (parametrized reformulation),
▶ computing oracles as a subproblem (parametrized reformulation) ...

11 / 22

Reformulation example
+

@ ◦

f x g @

A x

f (x) + g(A(x))

f (x) g(A(x))

A(x)

Convex and Lf-Smooth Convex

Linear and ∥A∥ ≤ M

∇f proxg

x → Ax

12 / 22

Commutativity of the sum operator
+

@◦

f xg @

A x

g(A(x)) + f (x)

f (x)g(A(x))

A(x)

Convex and Lf-SmoothConvex

Linear and ∥A∥ ≤ M

∇fproxg

x → Ax

13 / 22

Losing structure

+

@@

f xh x

h(x) + f (x)

f (x)h(x)

Convex and Lf-SmoothConvex

∇fproxh

14 / 22

Transfer of curvature

+

@@

f xh − 𝜇
2 ∥ · ∥

2 x

h(x) + f (x)

f (x) + 𝜇
2 ∥x∥

2h(x) − 𝜇
2 ∥x∥

2

𝜇- Strongly Convex and (Lf + 𝜇)-SmoothConvex

∇f + 𝜇Idproxh−𝜇
2 ∥·∥2

15 / 22

Outline
So far: from a user-provided problem, we get a list of (Template, Method, Rate)

S0. Gathermethods with associated complexity results

S1. Match a given formulation with all applicable methods

S2. Reformulate a given problem to find equivalent formulations

S3. Compare complexity results of (formulation, method) combinations

Our ranking criterion:
The convergence rate associated to each (template, method) combination (×
the computational cost per iteration)

How to deal with sophisticated rate functions

Example: Convergence rate of fixed-step (𝛾) GD for f convex and L-smooth

f (xN) − f∗ ≤
L
2

∥x0 − x∗∥2

1 +𝛾Lmin
{
2N, −1+(1−𝛾L)

−2N

𝛾L

}
1. Compute rates numerically whenever possible
2. Drop asymptotically worse methods if high iteration budget
3. Compare leading coefficients whenever possible
4. Sampling method

16 / 22

Conclusions

Contribution: a principled approach to compare optimizationmethods and its
Python implementation, OMRA
▶ Large repository of known results in the form (Template, Method,

Convergence Rate)
Pipeline

User
problem

Set of
templates

Applicable
methods

Associated
rates

Ranking of
methods

Literature representationModeling language Main output

Problem reduction

17 / 22

Next steps

▶ Make this encyclopedia available through a website (very soon)

Make the toolbox richer
▶ Aggregate more results in the database
▶ Add reformulation techniques (𝜂-trick, duality (for the LASSO example))

User features
▶ Code generation for recommendedmethods

18 / 22

Thank you again for your attention!

Questions ?

Do not hesitate to contact me:
→ sofiane.tanji@uclouvain.be
→ https://sofianetanji.com

19 / 22

mailto:sofiane.tanji@uclouvain.be
https://sofianetanji.com/

Preliminary results: Equivalent templates

Problem: Additive composite tem-
plate

min
x∈ℝn

f (x) + g(x) (6)

where
▶ f : ℝn → ℝ is 𝜇f-convex,

Lf-smooth. Access to ∇f.
▶ g : ℝn → ℝ is 𝜇g-convex,

Lg-smooth. Access to proxg.

Problem: Difference of convex tem-
plate

min
x∈ℝn

𝜑1(x) − 𝜑2(x) (7)

where
▶ 𝜑1 : ℝ

n → ℝ is convex,
L𝜑1-smooth. Access to ∇𝜑1.

▶ 𝜑2 : ℝ
n → ℝ is convex.

Access to ∇𝜑2.

20 / 22

Through the sequence of (implemented) transformations

f (x) + g(x) = g(x) + f (x) (Commutativity of the sum operator) (8)
= (g(x) +𝛾 ∥x∥2) + (f (x) −𝛾 ∥x∥2) (Transfer of curvature) (9)
= (g(x) +𝛾 ∥x∥2) − (𝛾 ∥x∥2 − f (x)) (plus = minus minus) (10)
= 𝜑1 − 𝜑2. (11)

▶ Properties: Depending on the parameter𝛾 , we can make 𝜑1, 𝜑2 convex.
▶ Having proxg and ∇f, we can compute ∇𝜑1,∇𝜑2.

21 / 22

Full matching algorithm

class Problem:
[...]
def compute_reformulations(self):

visited = set()
queue = [self.objective]
while len(queue):

current_tree = queue.pop(0)
for g in TRANSFORMATIONS:

for new_tree in current_tree.transform(g):
if new_tree not in visited:

visited.add(new_tree)
queue.append(new_tree)

return set(list(visited))

22 / 22

	Motivation and context
	Step 1 : Modeling language
	Step 3 : Problem reducibility
	Step 4 : Ranking of methods
	Conclusions
	Appendix

