A modeling-language based approach to
automatically recommend optimization methods

Sofiane Tanji

ICTEAM/INMA
Université catholique de Louvain

Joint work with Francois Glineur (UCLouvain)

INFORMS Annual Meeting 2024 | Sunday, October 20, 2024

Motivating example: LASSO regression

Consider X € R™9,y € R", A4, A, A3 € R*. LASSO regression solves:
A 1
B € arg min {—||y — XB|1® + 7L1||[5||1} , (nonsmooth convex)
Berd | 2
or equivalently,
" 1
p € arg min {—ny ~ XBI? subject to [|Blls < /12} (QP)
BeRrd | 2

or equivalently,

B e arg/;rem[ir@ {I181l1 subject to [ly — XBI|*> < A3} (SOCP)

1/22

For each formulation, you can use many different methods:

Formulation

Some applicable methods

nonsmooth convex
convex QPs
SOCPs

Four steps approach

coordinate descent, subgradient method, proximal gradient ...
splitting methods, active-set methods
augmented lagrangian, splitting methods

So. Gather methods with associated complexity results
S1. Match a given formulation with all applicable methods

S2. Reformulate a given problem to find equivalent formulations

S3. Compare complexity results of (formulation, method) combinations

2/22

In this talk

We present the Optimization Methods Ranking Assistant (OMRA)
» Arepository of convergence results existing in the literature
» A modeling language to describe optimization problems
» Detection of methods applicable to user-provided problems
» Comparison of applicable methods by worst-case performance
> all of this framed in a PyTHON toolbox.

Pipeline
User Set of Applicable Associated Ranking of
E— E— E— E—
problem templates methods rates methods
Modeling language Literature representation Main output

Problem reduction

3/22

Outline

Four steps approach

So

S1

S2

S3

. Gather methods with associated complexity results

. Match a given formulation with all applicable methods

. Reformulate a given problem to find equivalent formulations

. Compare complexity results of (formulation, method) combinations

Setting : What optimization problems usually look like

Consider any optimization problem in the black-box form:

mxin f(x) (1)

where f is decomposed into simpler components f;, for example:

n
) =00 +F2 0 f300 +)y (x) = max f(x) (2)
= o
with
> possible assumptions on the f;’s (convexity, Lipschitz continuity, etc.)
> f; can also correspond to "atom functions": ¢;-norm...
> access to certain oracles for each f; (subgradient, proximal operator, etc.)

4122

Example of what you can find in the literature

Theorem: Worst-case convergence rate of Fast Proximal Gradient Method

Take f : R" — R L-smooth and convex and h : R™ — R closed, proper,
convex. Suppose ||xo — X:|| < R.

Then, the Fast Proximal Gradient Method with stepsize % applied to mini-
mizing F (x) = f(x) + h(x) satisfies for alln > 1:

2L ,
Fxp) = F(x.) € 5———=|Ixo - x.
() = F(x) < ——Z— llxo = x| 3)

5/22

Complexity results follow the same skeleton

Theorem: Worst-case convergence rate of Algorithm 1

Suppose assumptions { (A1), (A2), (A3)} = A hold.
Consider some initial conditions J .

Then, Algorithm 1 with parameters # applied to Problem (1) satisfies for all
k> 1

F(Xk) - F(X*) < (p(k,ﬂ,],?) (4)

Existing results (always) have
> Some template optimization problem (in red)
» The considered optimization method (in purple)
» Arate of convergence (in green)

6/22

Elements to encode known complexity results

Template problem

¢ This is just an optimization problem (use a modeling language)
Optimization method

» Enough to encode the parameters.

» Dependence of method parameters to template parameters
Convergence rate

Example: Convergence rate of FISTA with stepsize 1/L

initial conditions
—_——
2L
2
Fxn) —F. < lIxo —x"|
_ n?+5n+2
performance measure

with template parameter L and method parameter 1/L.

7122

Outline

Four steps approach

So

S1

S2

S3

. Gather methods with associated complexity results

. Match a given formulation with all applicable methods

. Reformulate a given problem to find equivalent formulations

. Compare complexity results of (formulation, method) combinations

How to write an optimization problem in OMRA

pb = Problem()
Problem x = pb.declare_variable("x", Rn)
f = pb.declare_function("f", Rn, R)
min f(x) + g(A(x)) (5) g = pb.declare_function("g", Rm, R)
XeR? A = pb.declare_function("A", Rn, Rm)
where pb.set_objective(f(x) + g(A(x)))
> f:R" - Ris convex, f.add_property(Convex())
Ls-smooth. Access to Vf. f.add_property(Smooth(@, 10.))
» g:R™ — Ris convex. Access g.add_property(Convex())
to proxg. A.add_property(LinearQ 0. ?)
> A:R" — R™is alinear pb.declare_oracle(DerlYatlve(f))
mapping with [|A]| < M. pb.declare_oracle(Prox1maP(g))
Access to x — Ax. pb.declare_oracle(Evaluation(A))

8/22

Optimization problem as a Directed Acyclic Graph

F(x) +g(A(x))

9/22

Optimization problem as a Directed Acyclic Graph

F(x) +g(A())

g(A(x)

f

Convex and Lf-Smooth

A X

Linear and ||A|| <M

9/22

Optimization problem as a Directed Acyclic Graph

fvf

Convex and Lf-Smooth

X

F(x) +g(A())

g(A(x)

g Pproxg A(x)
A x — Ax X

Linear and ||A]| <M

9/22

Finding applicable methods means matching the
problem to a template

F(x) +g(x) F(x) +g(x)

()
) g (@)

f feof X g Vg X f Feof X g Vg X

Strongly convex L-smooth Convex

Optimization Problem P Optimization Template T

10/22

Finding applicable methods means matching the

problem to a template

F(x) +g(x)

f feof X g Vg

L-smooth

Strongly convex

Optimization Problem P

fF(x) +g(x)

X

F(x) +g(x)

©.
) g (@)

f Feof X g Vg X

Optimization Template T

Convex

10/22

Finding applicable methods means matching the

problem to a template

F(x) +g(x)

f feof X g Vg

L-smooth

Strongly convex

Optimization Problem P

fF(x) +g(x)

X

F(x) +g(x)

©.
) g (@)

f Feof X g Vg X

Optimization Template T

Convex

10/22

Finding applicable methods means matching the

problem to a template

F(x) +g(x)

f feof X g Vg

L-smooth

Strongly convex

Optimization Problem P

fF(x) +g(x)

X

F(x) +g(x)

©.
) g (@)

f feof X g Vg X

Optimization Template T

Convex

10/22

Finding applicable methods means matching the

problem to a template

F(x) +g(x)

f feof X g Vg

L-smooth

Strongly convex

Optimization Problem P

fF(x) +g(x)

X

F(x) +g(x)

©.
) g (@)

f ' eof X g Vg X

Optimization Template T

Convex

10/22

Finding applicable methods means matching the
problem to a template

F(x) +g(x) fF(x) +g(x)
f(x) +g(x)
f(x) g(x) f(x) g(x)
f feof X g Vg o x B reor M g vg x

Strongly convex L-smooth

Optimization Problem P Optimization Template T

10/22

Finding applicable methods means matching the
problem to a template

f(x) +g(x) f(x) +g(x)
f(x) +g(x)
f(x) g(x) f(x) g(x)
M reor B [@ve x H reor B [@ Ve x

Strongly convex L-smooth

Optimization Problem P Optimization Template T

10/22

Finding applicable methods means matching the

problem to a template

F(x) +g(x)
fF(x) +g(x)
f(x) gx)
B reor M @ve X
Strongly convex L-smooth

Optimization Problem P

f(x) +g(x)
f(x) g(x)
W reor M @ve X

Optimization Template T

10/22

Outline

Four steps approach

So

S1

S2

S3

. Gather methods with associated complexity results

. Match a given formulation with all applicable methods

. Reformulate a given problem to find equivalent formulations

. Compare complexity results of (formulation, method) combinations

Scenario 2 : reformulations

We need to match user-provided problems to templates.
v/ Ideal scenario is immediate match of user-provided problem to template.
» Solution otherwise: use mathematical results and reformulation tricks!

Mathematical results:
> Sum of smooth (resp. convex) functions is smooth (resp. convex),
» Proximal operator of f + y||x||? is computable given prox; ...

Reformulation tricks:
» Commutativity of operators,
» losing structure and regrouping terms,
» transfer of curvature (parametrized reformulation),
» computing oracles as a subproblem (parametrized reformulation) ...

11/22

Reformulation example

F(x) +g(A())

g(A(x)

f Vf X g proxg A(x)
Convex and Lf-Smooth
A x — Ax X

Linear and ||A|| <M

12/22

Commutativity of the sum operator
gAC) +f0 (+)

Convex

Convex and L¢-Smooth

A x — Ax X

Linear and ||A]| < M

13/22

Losing structure

h(x) +f(x)

h Proxs X fvf X

Convex and Lf-Smooth

14122

Transfer of curvature

h(x) - §lixI1?

h=51- 12 ProXp sz X fVF+ pld X

- Strongly Convex and (Lf + ¢)-Smooth

15/22

Outline

So far: from a user-provided problem, we get a list of (Template, Method, Rate)
So. Gather methods with associated complexity results

S1. Match a given formulation with all applicable methods

S2. Reformulate a given problem to find equivalent formulations

S3. Compare complexity results of (formulation, method) combinations

Our ranking criterion:
The convergence rate associated to each (template, method) combination (x
the computational cost per iteration)

How to deal with sophisticated rate functions

Example: Convergence rate of fixed-step (y) GD for f convex and L-smooth

foxn) —f. < 5

L

lIxo = x*|I?

1+ yL min {ZN, W}

=

. Compute rates numerically whenever possible

. Drop asymptotically worse methods if high iteration budget

. Compare leading coefficients whenever possible

. Sampling method

16/ 22

Conclusions

Contribution: a principled approach to compare optimization methods and its
Python implementation, OMRA
» Large repository of known results in the form (Template, Method,
Convergence Rate)

Pipeline
User — Set of __, Applicable = Associated | | Ranking of
problem templates methods rates methods
Modeling language Literature representation Main output

Problem reduction

17/22

Next steps

» Make this encyclopedia available through a website (very soon)

Make the toolbox richer
> Aggregate more results in the database
> Add reformulation techniques (7-trick, duality (for the LASSO example))

User features
» Code generation for recommended methods

18/ 22

Thank you again for your attention!

Questions ?

Do not hesitate to contact me:
— sofiane.tanji@uclouvain.be
— https://sofianetanji.com

19/22

mailto:sofiane.tanji@uclouvain.be
https://sofianetanji.com/

Preliminary results: Equivalent templates

Problem: Additive composite tem-
plate

Problem: Difference of convex tem-
plate

min £(x) +g(x) (6)

where
» f:R" — Ris ys-convex,
Ls-smooth. Access to Vf.
> g:R" — Ris pg-convex,
Lg-smooth. Access to prox,.

min ¢y (x) — p2(x) (7)

where
> ¢ : R" — Risconvex,
L 5,-smooth. Access to V ¢.
> ¢, : R" — Ris convex.
Access to V ;.

20/ 22

Through the sequence of (implemented) transformations

f(x) + g(x) = g(x) + f(x) (Commutativity of the sum operator) (8)
= (g(x) + ylIxII*) + (F(x) — ylIx||*) (Transfer of curvature) ~ (9)
= () + YIXII?) = (yIIXI12 = £(x)) (plus = minus minus) (10
= ¢1— @2 (11)

» Properties: Depending on the parameter y, we can make ¢y, ¢, convex.
> Having prox; and Vf, we can compute V ¢y, V ¢,.

21/22

Full matching algorithm

class Problem:
L...]
def compute_reformulations(self):
visited = set()
queue = [self.objective]
while len(queue):
current_tree = queue.pop(@)
for g in TRANSFORMATIONS:

for new_tree in current_tree.transform(g):

if new_tree not in visited:
visited.add(new_tree)
queue.append(new_tree)
return set(list(visited))

22/22

	Motivation and context
	Step 1 : Modeling language
	Step 3 : Problem reducibility
	Step 4 : Ranking of methods
	Conclusions
	Appendix

