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Talk Outline

1. Quick introduction to electricity markets and CH pricing

2. Formulation of the CH pricing problem

3. First-order methods to compute CH prices

4. Numerical experiments

5. Conclusion



Setting

Multiple decision makers: each producer and buyer seeks to maximize its
individual benefits.

2 / 21



Supply and demand example

Consider a market with 2 producers and 2 buyers.

Quantity (MW) Limit price (€/MW) Startup cost (€)

Buyer 1 10 300 -
Buyer 2 14 10 -

Producer 1 12 40 200
Producer 2 13 100 -
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Supply and demand example

Maximizing social welfare maximizes value for consumers while minimizing cost
for producers: both producers and consumers are happy !
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Supply and demand example

At (40€/MW), Producer 1 would rather produce 12MW than 10MW: following
market equilibrium leads to a lost opportunity cost (LOC).
▶ Maximizing social welfare with uniform pricing is not equivalent to having

a market equilibrium: individual agents may have LOCs.
▶ In this example, the market operator should make a side payment to

Producer 1 to compensate its LOC.

3 / 21



Summary and CH pricing

The market operator is an independent entity making the following decisions:
▶ Goal: Maximize social welfare (with uniform prices) under operating

constraints and power balance equality
▶ Side payments must be made whenever market equilibrium is not

equivalent to maximizing social welfare.
▶ There are many pricing rules and each may lead to different side payments.
▶ The CH prices are defined as the prices minimize these side payments.
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Primal formulation
Producers must match generation and demand under technical constraints while
minimizing the cost for each participant.
This leads to the following MILP, named "Unit Commitment problem":

min
𝜉,l


∑︁
t∈T

∑︁
g∈G

cost(𝜉gt ) − VOLL
∑︁
t∈T

lt

 (1)

subject to:

0 ≤ lt ≤ Lt ∀t ∈ T (2)

𝜉g ∈ Πg ∀g ∈ G (3)©«
∑︁
g∈G

ptg
ª®¬ − lt = 0 ∀t ∈ T [𝜆t] (4)
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min
𝜉,l


∑︁
t∈T

∑︁
g∈G

cost(𝜉gt ) − VOLL
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t∈T

lt

 (1)

subject to:

0 ≤ lt ≤ Lt ∀t ∈ T (2)

𝜉g ∈ Πg ∀g ∈ G (3)©«
∑︁
g∈G

ptg
ª®¬ − lt = 0 ∀t ∈ T [𝜆t] (4)

Here, 𝜉g =
(
pg, p̄g, ug, vg,wg

)
is the state of a generator g, T is the time horizon,

G the set of producers, Lt is the demand of the consumer at time t and lt the
demand met by the market.
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Partial Lagrangian dual
Applying the Lagrangian relaxation technique on the power balance constraint,
we get the following Lagrangian function:

L(𝜉, l, 𝜆) :=
∑︁
t∈T

∑︁
g∈G

cost(𝜉gt ) − VOLL
∑︁
t∈T

lt −
∑︁
t∈T

𝜆t


∑︁
g∈G

ptg − lt
 (5)

The dual problem is then:

max
𝜆
L(𝜆) =min

𝜉,l
L(𝜉, l, 𝜆) (6)

subject to:

0 ≤ lt ≤ Lt ∀t ∈ T
𝜉g ∈ Πg ∀g ∈ G
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CH prices
Remember that CH prices are defined as the prices minimizing the side
payments done by the market operator. Authors in Gribik et al. (2007) show that:

min
𝜆

∑︁
p∈participants

uplifts = min
𝜆
{duality gap} = min

𝜆
{UC − L(𝜆)} = UC −max

𝜆
L(𝜆)

This leads to an alternative definition of CH prices:

Definition
The convex hull prices are the optimal variables of the Lagrangian dual
associated to the unit commitment problem in which one dualizes the balance
condition.

Note: This is equivalent (see Hua and Baldick (2016)) to querying the dual
variables associated to the balance condition in the primal problem where for all
generators g, Pg have been replaced by conv(Pg).
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Overview of methods

Two types of methods to compute CH prices:

1. So-called primal methods which directly tackle the primal CH problem
(with the Pg being replaced by conv(Pg)) and obtain prices by querying
the dual value associated with the power balance constraint

2. Our focus in this talk: dual methods which focus on the maximization of
the Lagrangian, a piece-wise linear concave function using methods from
nonsmooth optimization.
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First-order oracle

𝜋∗ = argmax
𝜋∈Q

L(𝜋) = L0(𝜋) +
∑︁
g∈G
Lg (𝜋)

 (7)

where:

L0(𝜋) = min
l

∑︁
t∈T
[CVOLL(Lt − lt) + 𝜋t lt] (8)

subject to: lt ≤ Lt ∀t ∈ T .

and:

Lg (𝜋) = min
(p,p̄,u,v,w)

∑︁
t∈T
[C(ugt , v

g
t , p

g
t ) − 𝜋tp

g
t ] (9)

subject to: (pg, p̄g, ug, vg,wg) ∈ Pg ∀t ∈ T .
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First-order oracle

𝜋∗ = argmax
𝜋∈Q

L(𝜋) = L0(𝜋) +
∑︁
g∈G
Lg (𝜋)

 (7)

Lemma
First-order oracle L is nonsmooth, concave and piece-wise linear with supgradient:

𝜕L(𝜋) =
𝜕L0(𝜋) +

∑︁
g∈G

𝜕Lg (𝜋)
 ∋

l∗ −
∑︁
g∈G

pg∗

 (8)

where (l∗, pg
∗) are the optimal values of respectively (8) and (9).

Proof.
Proof is standard and may be found in (Conforti et al., 2014, Corollary 8.3) □
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Subgradient-based methods

Algorithm 1 Subgradient method (vanishing step lengths) | Boyd et al. (2003)

Parameters: initial step length 𝜂

Inputs: box X = [𝜋min, 𝜋max]T , initial iterate x1 ∈ X
For k = 1, 2, . . . ,N perform the following steps:
1. Select a subgradient gk ∈ 𝜕L̄(xk).
2. Compute xk+1 = PX

(
xk − tk gk

∥gk ∥

)
with tk =

𝜂

k or tk =
𝜂√
k
.

Output: best iterate xbest
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Subgradient-based methods

Algorithm 2 Subgradient method (estimated Polyak step lengths) | Boyd et al.
(2003)

Parameters: initial suboptimality estimate 𝛼 > 0

Inputs: box X = [𝜋min, 𝜋max]T , initial iterate x1 ∈ X
For k = 1, 2, . . . ,N perform the following steps:
1. Select a subgradient gk ∈ 𝜕L̄(xk).
2. Compute xk+1 = PX

(
xk − tk gk

∥gk ∥2

)
with tk = L̄k − (L̄k

best −
𝛼
k ).

Output: best iterate xbest

Polyak steplength is L̄k − L̄∗.
When L̄∗ is unknown, it is approximated by L̄k

best −
𝛼
k .
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Subgradient-based methods

Algorithm 3 Last-iterate optimal subgradient method | Zamani and Glineur
(2023)

Parameters: number of iterations N

Inputs: box X = [𝜋min, 𝜋max]T , initial iterate x1 ∈ X satisfying ∥x1 − x∗∥ ≤ R
for some minimizer x∗.

For k = 1, 2, . . . ,N perform the following steps:
1. Select a subgradient gk ∈ 𝜕L̄(xk).
2. Compute xk+1 = PX

(
xk − tk gk

∥gk ∥

)
with tk =

R(N+1−k)√
(N+1)3

.

Output: last iterate xN+1
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Bundle methods
Lemaréchal et al. (1995)

Three steps:
1. Bundle information:

x ↦→ 𝜑 (xi) + g⊤𝜑 (x − xi)
2. Polyhedral approximation:

𝜑 (x) = max
i∈Bundle

𝜑 (xi) + g⊤𝜑 (x − xi)

3. Stability center in the bundle← this is where bundle methods vary
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Bundle Level Method

Algorithm 4 Bundle Level Method (BLM) | Lemaréchal et al. (1995)

Parameters: level set parameter 𝛼 ∈ (0, 1).
Inputs: box X = [𝜋min, 𝜋max]T , initial iterate x1 ∈ X
Initialize UB = +∞, LB = −∞.
For k = 1, 2, . . . ,N perform the following steps:
1. Compute first-order oracle (L̄(xk), gk ∈ 𝜕L̄(xk)).
2. Update upper bound UB = min{UB, L̄(xk)}.
3. Update polyhedral model

LB = min{ t s.t. x ∈ X and L̄(x i) + ⟨𝜕L̄(x i), x − x i⟩ ≤ t, ∀i ≤ k}.
4. Update level set S = LB + 𝛼 (UB − LB).
5. Update iterate

xk+1 = min{ ∥x−xk ∥2 s.t. x ∈ X and L̄(x i) + ⟨𝜕L̄(x i), x−x i⟩ ≤ S, ∀i ≤ k}.
Output: best iterate xbest
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Bundle Proximal Level Method

Algorithm 5 Bundle Proximal Level Method (BPLM) | Lemaréchal et al. (1995)

Parameters: level set parameter 𝛼 ∈ (0, 1).
Inputs: box X = [𝜋min, 𝜋max]T , x1 ∈ X , UB = +∞, LB = −∞,Δ = +∞,S′ = +∞.
For k = 1, 2, . . . ,N perform the following steps:
1. Compute oracle, update upper bound, polyhedral model and level set.
2. if UB − LB ≥ (1 − 𝛼)Δ then
3. Update proximal level set S′ = min {S,S′}.
4. else ⊲ Regular level set provides sufficient decrease
5. Update proximal level set S′ = S and proximal gap Δ = UB − LB
6. end if
7. Update iterate

xk+1 = min{ ∥x−xk ∥2 s.t. x ∈ X and L̄(x i)+⟨𝜕L̄(x i), x−x i⟩ ≤ S′, ∀i ≤ k}.
Output: best iterate xbest
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Parameter-free methods
Parameter-free: do not require the input of any problem parameters and/or
problem classes
We considered two methods: D-Adaptation Defazio and Mishchenko (2023) and
DowG Khaled et al. (2023).
Key ideas:
▶ For subgradient-based methods, the optimal stepsize depends on unknown

quantities: ∥x0 − x∗∥ and the Lipschitz constant of the objective

▶ Normalizing the stepsize (divide by
√︃∑k

i=0 ∥gi ∥2) removes the dependency
on the Lipschitz constant

▶ Parameter-free methods maintain and update a lower bound on the initial
distance to circumvent the need for the exact quantity.

▶ Two regimens in practice: one where the distance estimator is tuning itself
automatically and a faster one when an appropriate value has been found.
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Parameter-free methods

Algorithm 6 D-Adaptation (DA)

Parameters: initial lower bound D1 on ∥x1 − x∗∥
Inputs: box X = [𝜋min, 𝜋max]T , initial iterate x1 ∈ X
Initialize s1 = 0, 𝛾1 = ∥g1∥−1.
For k = 1, 2, . . . ,N perform the following steps:
1. Select a subgradient gk ∈ 𝜕L̄(xk).
2. Compute sk+1 = sk + Dkgk .

3. Compute 𝛾k+1 = (∑k
i=1 ∥gi ∥2)

−12 .

4. Dk+1 = max
(
Dk,

𝛾k+1∥sk+1∥2−∑i≤k 𝛾
iD2

i ∥g
i ∥2

2∥sk+1∥

)
.

5. Compute xk+1 = PX
(
xk − 𝛾k+1sk+1

)
.

Output: best iterate xbest
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Parameter-free methods

Algorithm 7 Distance over Weighted Gradients (DoWG)

Parameters: initial lower bound d0 on ∥x1 − x∗∥
Inputs: box X = [𝜋min, 𝜋max]T , initial iterate x1 ∈ X
Initialize v0 = 0.

For k = 1, 2, . . . ,N perform the following steps:
1. Select a subgradient gk ∈ 𝜕L̄(xk).
2. Compute distance estimator dk = max(dk−1, ∥xk − x1∥).
3. Compute weighted gradient sum vk = vk−1 + d2k ∥g

k ∥2.
4. Compute step size 𝜂k =

d2k√
vk
.

5. Compute step xk+1 = PX
(
xk − 𝜂kgk

)
.

Output: best iterate xbest
14 / 21



Smoothing technique
Nonsmooth minimization with a subgradient: necessarily slow. Idea:
▶ Compute a smooth approximation of the problem (with Nesterov’s

technique)
▶ Apply accelerated gradient method to solve the approximation

With smoothing parameter 𝜍 , we have the following approximations:

L0,𝜍 (𝜋) = min
l

∑︁
t∈T
[CVOLL(Lt − lt) + 𝜋t lt +

𝜍

2
∥lt ∥2] (9)

subject to: lt ≤ Lt ∀t ∈ T .

Lg,𝜍 (𝜋) = min
(p,p̄,u,v,w)

∑︁
t∈T
[C(ugt , v

g
t , p

g
t ) − 𝜋tp

g
t

+ 𝜍
2
∥(p, p̄,u, v,w)∥2] (10)

subject to: (pg, p̄g, ug, vg,wg) ∈ conv(Pg) ∀t ∈ T .
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Smoothing technique

Lemma
We have :

∇L̃𝜍 =


∑︁
g∈G
(pg𝜍,∗) − l∗𝜍

 (9)

where pg𝜍,∗ and l∗𝜍 are respectively the optimal values of the minimization problems
(10) and (9), both unique by strong convexity of the objective functions.
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Smoothing-based method

Algorithm 8 Fast (Projected) Gradient Method (FGM) | Nesterov (2005)

Parameters: initial step length 𝜂, smoothing parameter 𝜍

Inputs: box X = [𝜋min, 𝜋max]T , initial iterate x1 ∈ X Initialize y1 = x1.

For k = 1, 2, . . . ,N perform the following steps:

1. Compute ∇L̃𝜍 (yk).
2. Compute xk+1 = PX

(
yk − 𝜂∇L̃𝜍 (yk)

)
.

3. Compute yk+1 = xk+1 + k−1
k+2 (x

k+1 − xk).
Output: best iterate xbest
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Experimental setup

▶ Full Julia code using JuMP/Gurobi.
▶ 24 real-world instances:

Dataset name # instances # generators # time periods

Belgian 8 68 96
Californian 16 610 48

▶ Hyperparameter selection: all methods have 1 (critical) hyperparameter to
tune. Benchmarks are computed after tuning all methods on one instance
per dataset.

▶ We compute optimal solutions with 10−9 relative error using the Bundle
Level Method.

▶ Stopping criterion is 15 minutes (time constraint for day-ahead markets)
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Simple heuristics

▶ Warm start: we set the first iterate to be the dual variables of the
continuous relaxation of the unit commitment problem.
▶ Cheap initialization (∼ one oracle call)
▶ Interpretable: exactly the CH prices in the case where we only have minimum

up/down times and constant start-up/shut-down costs.
▶ Averaging: we return the best iterate between (1) the price iterate which

yielded the lowest error during the run and (2) the average of the 10% last
iterates.
▶ Inexpensive (one oracle call)
▶ Can only decrease the objective function
▶ In our benchmarks, we typically observe a relative error decrease in the order

of 2 × 10−6.
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Benchmark on real-world datasets
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Conclusion

Context:
▶ Computing CH prices is expensive (large MIP)
▶ Access to a first-order oracle is possible by solving many small MIPs
▶ We investigate the efficiency of (known) first-order methods for solving the

CHP Lagrangian relaxation.

Contributions:
▶ Clear view on methods traditionaly less used for CH pricing
▶ Simple heuristics to improve accuracy for practicioners
▶ Open source Julia toolbox for practicioners and researchers to test methods

and investigate a promising pricing rule for electricity markets

Code is available on sofianetanji.com/software
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