Efficient computation of convex hull prices with level and subgradient methods: a computational comparison of dual methods

Sofiane Tanji¹, Yassine Kamri¹, François Glineur¹, Mehdi Madani^{1,2}

¹Université catholique de Louvain

 2 N-SIDE

EUROPT 2024 | June 2024

Talk Outline

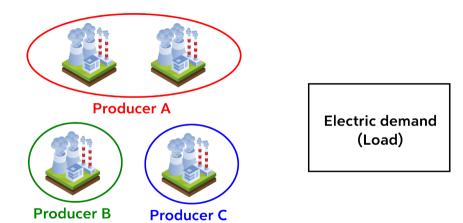
1. Quick introduction to electricity markets and CH pricing

2. Formulation of the CH pricing problem

3. First-order methods to compute CH prices

4. Numerical experiments

5. Conclusion

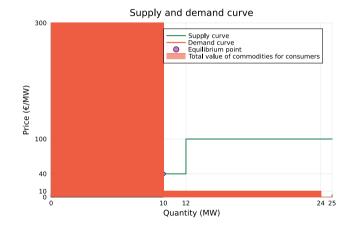


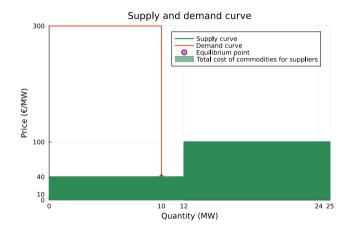
Multiple decision makers: each producer and buyer seeks to maximize its individual benefits.

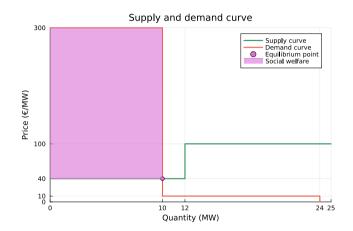
Consider a market with 2 producers and 2 buyers.

	Quantity (MW)	Limit price (€/MW)	Startup cost (€)
Buyer 1	10	300	-
Buyer 2	14	10	-
Producer 1	12	40	200
Producer 2	13	100	-









Maximizing social welfare maximizes value for consumers while minimizing cost for producers: both producers and consumers are happy !

At (40€/MW), Producer 1 would rather produce 12MW than 10MW: following market equilibrium leads to a lost opportunity cost (LOC).

- Maximizing social welfare with uniform pricing is not equivalent to having a market equilibrium: individual agents may have LOCs.
- In this example, the market operator should make a side payment to Producer 1 to compensate its LOC.

Summary and CH pricing

The market operator is an independent entity making the following decisions:

- Goal: Maximize social welfare (with uniform prices) under operating constraints and power balance equality
- Side payments must be made whenever market equilibrium is not equivalent to maximizing social welfare.
- > There are many pricing rules and each may lead to different side payments.
- The CH prices are defined as the prices minimize these side payments.

Talk Outline

1. Quick introduction to electricity markets and CH pricing

2. Formulation of the CH pricing problem

3. First-order methods to compute CH prices

4. Numerical experiments

5. Conclusion

Primal formulation

Producers must match generation and demand under technical constraints while minimizing the cost for each participant.

This leads to the following MILP, named "Unit Commitment problem":

$$\min_{\xi,l} \left[\sum_{t \in \mathcal{T}} \sum_{g \in \mathcal{G}} \operatorname{cost}(\xi_t^g) - VOLL \sum_{t \in \mathcal{T}} l_t \right]$$
subject to:
$$0 \le l_t \le L_t \qquad \forall t \in \mathcal{T} \qquad (2)$$

$$\xi_g \in \Pi^g \qquad \forall g \in \mathcal{G} \qquad (3)$$

$$\left(\sum_{g \in \mathcal{G}} p_g^t \right) - l_t = 0 \qquad \forall t \in \mathcal{T} \quad [\lambda_t] \qquad (4)$$

$$\min_{\xi,l} \left[\sum_{t \in \mathcal{T}} \sum_{g \in \mathcal{G}} \operatorname{cost}(\xi_t^g) - VOLL \sum_{t \in \mathcal{T}} l_t \right]$$
subject to:
$$0 \le l_t \le L_t \qquad \forall t \in \mathcal{T} \qquad (2)$$

$$\xi_g \in \Pi^g \qquad \forall g \in \mathcal{G} \qquad (3)$$

$$\left(\sum_{g \in \mathcal{G}} p_g^t \right) - l_t = 0 \qquad \forall t \in \mathcal{T} \quad [\lambda_t] \qquad (4)$$

Here, $\xi_g = (p_g, \bar{p}_g, u_g, v_g, w_g)$ is the state of a generator g, \mathcal{T} is the time horizon, \mathcal{G} the set of producers, L_t is the demand of the consumer at time t and l_t the demand met by the market.

Partial Lagrangian dual

Applying the Lagrangian relaxation technique on the power balance constraint, we get the following Lagrangian function:

$$L(\xi, l, \lambda) := \sum_{t \in \mathcal{T}} \sum_{g \in \mathcal{G}} \operatorname{cost}(\xi_t^g) - VOLL \sum_{t \in \mathcal{T}} l_t - \sum_{t \in \mathcal{T}} \lambda_t \left[\sum_{g \in \mathcal{G}} p_g^t - l_t \right]$$
(5)

The dual problem is then:

r

$$\max_{\lambda} \mathcal{L}(\lambda) = \min_{\xi, l} L(\xi, l, \lambda)$$
subject to:

$$0 \le l_t \le L_t \ \forall t \in \mathcal{T}$$

$$\xi_g \in \Pi^g \ \forall g \in \mathcal{G}$$
(6)

CH prices

Remember that CH prices are defined as the prices minimizing the side payments done by the market operator. Authors in Gribik et al. (2007) show that:

$$\min_{\lambda} \sum_{p \in \text{participants}} \text{uplifts} = \min_{\lambda} \{\text{duality gap}\} = \min_{\lambda} \{UC - \mathcal{L}(\lambda)\} = UC - \max_{\lambda} \mathcal{L}(\lambda)$$

This leads to an alternative definition of CH prices:

Definition

The convex hull prices are the optimal variables of the Lagrangian dual associated to the unit commitment problem in which one dualizes the balance condition.

Note: This is equivalent (see Hua and Baldick (2016)) to querying the dual variables associated to the balance condition in the primal problem where for all generators g, \mathcal{P}^g have been replaced by $\operatorname{conv}(\mathcal{P}^g)$.

Overview of methods

Two types of methods to compute CH prices:

- 1. So-called primal methods which directly tackle the primal CH problem (with the \mathcal{P}^g being replaced by $\operatorname{conv}(\mathcal{P}^g)$) and obtain prices by querying the dual value associated with the power balance constraint
- 2. Our focus in this talk: dual methods which focus on the maximization of the Lagrangian, a piece-wise linear concave function using methods from nonsmooth optimization.

Talk Outline

1. Quick introduction to electricity markets and CH pricing

2. Formulation of the CH pricing problem

3. First-order methods to compute CH prices

4. Numerical experiments

5. Conclusion

First-order oracle

$$\pi^* = \arg \max_{\pi \in Q} \left[\mathcal{L}(\pi) = \mathcal{L}_0(\pi) + \sum_{g \in \mathcal{G}} \mathcal{L}_g(\pi) \right]$$
(7)

where:

$$\mathcal{L}_0(\pi) = \min_{\mathbf{I}} \sum_{t \in \mathcal{T}} [C_{VOLL}(L_t - l_t) + \pi_t l_t]$$
(8)

subject to: $l_t \leq L_t \quad \forall t \in \mathcal{T}.$

and:

$$\mathcal{L}_{g}(\pi) = \min_{(\mathbf{p}, \bar{\mathbf{p}}, \mathbf{u}, \mathbf{v}, \mathbf{w})} \sum_{t \in \mathcal{T}} [C(u_{t}^{g}, v_{t}^{g}, p_{t}^{g}) - \pi_{t} p_{t}^{g}]$$
(9)
subject to: $(p^{g}, \bar{p}^{g}, u^{g}, v^{g}, w^{g}) \in \mathcal{P}^{g}$ $\forall t \in \mathcal{T}.$

First-order oracle

$$\pi^* = \arg \max_{\pi \in Q} \left[\mathcal{L}(\pi) = \mathcal{L}_0(\pi) + \sum_{g \in \mathcal{G}} \mathcal{L}_g(\pi) \right]$$
(7)

Lemma

First-order oracle \mathcal{L} is nonsmooth, concave and piece-wise linear with supgradient:

$$\hat{\partial}\mathcal{L}(\pi) = \left[\hat{\partial}\mathcal{L}_0(\pi) + \sum_{g \in \mathcal{G}} \hat{\partial}\mathcal{L}_g(\pi)\right] \ni \left[l^* - \sum_{g \in \mathcal{G}} p_*^g\right]$$
(8)

where (**I***, **p**^g_{*}) are the optimal values of respectively (8) and (9). Proof. Proof is standard and may be found in (Conforti et al., 2014, Corollary 8.3)

Subgradient-based methods

Algorithm 1 Subgradient method (vanishing step lengths) | Boyd et al. (2003)

Parameters: initial step length η **Inputs:** box $X = [\pi_{min}, \pi_{max}]^T$, initial iterate $x^1 \in X$ For k = 1, 2, ..., N perform the following steps: 1. Select a subgradient $g^k \in \partial \overline{\mathcal{L}}(x^k)$. 2. Compute $x^{k+1} = P_X \left(x^k - t_k \frac{g^k}{\|g^k\|} \right)$ with $t_k = \frac{\eta}{k}$ or $t_k = \frac{\eta}{\sqrt{k}}$.

Output: best iterate *x*_{best}

Subgradient-based methods

Algorithm 2 Subgradient method (estimated Polyak step lengths) | Boyd et al. (2003)

Parameters: initial suboptimality estimate $\alpha > 0$ **Inputs:** box $X = [\pi_{min}, \pi_{max}]^T$, initial iterate $x^1 \in X$ For k = 1, 2, ..., N perform the following steps: 1. Select a subgradient $g^k \in \partial \overline{\mathcal{L}}(x^k)$. 2. Compute $x^{k+1} = P_X \left(x^k - t_k \frac{g^k}{\|g^k\|^2} \right)$ with $t_k = \overline{\mathcal{L}}^k - (\overline{\mathcal{L}}_{best}^k - \frac{\alpha}{k})$.

Output: best iterate *x*_{best}

Polyak steplength is $\overline{\mathcal{L}}^k - \overline{\mathcal{L}}^*$. When $\overline{\mathcal{L}}^*$ is unknown, it is approximated by $\overline{\mathcal{L}}_{best}^k - \frac{\alpha}{k}$.

Subgradient-based methods

Algorithm 3 Last-iterate optimal subgradient method | Zamani and Glineur (2023)

Parameters: number of iterations N

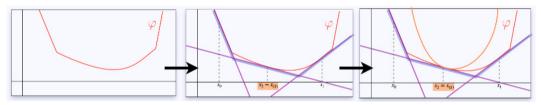
Inputs: box $X = [\pi_{min}, \pi_{max}]^T$, initial iterate $x^1 \in X$ satisfying $||x^1 - x^*|| \leq R$ for some minimizer x^* .

For k = 1, 2, ..., N perform the following steps:

- 1. Select a subgradient $g^k \in \partial \overline{\mathcal{L}}(x^k)$.
- 2. Compute $x^{k+1} = P_X\left(x^k t_k \frac{g^k}{\|g^k\|}\right)$ with $t_k = \frac{R(N+1-k)}{\sqrt{(N+1)^3}}$.

Output: last iterate x_{N+1}

Bundle methods Lemaréchal et al. (1995)



Three steps:

1. Bundle information:

$$x \mapsto \varphi(x_i) + g_{\varphi}^{\top}(x - x_i)$$

2. Polyhedral approximation:

$$\hat{\varphi}(x) = \max_{i \in \text{Bundle}} \varphi(x_i) + g_{\varphi}^{\top}(x - x_i)$$

3. Stability center in the bundle \leftarrow this is where bundle methods vary

Bundle Level Method

Algorithm 4 Bundle Level Method (BLM) | Lemaréchal et al. (1995)

Parameters: level set parameter $\alpha \in (0, 1)$.

Inputs: box $X = [\pi_{min}, \pi_{max}]^T$, initial iterate $x^1 \in X$ Initialize $UB = +\infty$, $LB = -\infty$.

For k = 1, 2, ..., N perform the following steps:

- 1. Compute first-order oracle $(\overline{\mathcal{L}}(x^k), g_{\underline{J}}^k \in \partial \overline{\mathcal{L}}(x^k))$.
- 2. Update upper bound $UB = \min\{UB, \overline{\mathcal{L}}(x^k)\}$.
- 3. Update polyhedral model

 $LB = \min\{ t \text{ s.t. } x \in X \text{ and } \overline{\mathcal{L}}(x^i) + \langle \partial \overline{\mathcal{L}}(x^i), x - x^i \rangle \le t, \forall i \le k \}.$

- 4. Update level set $S = LB + \alpha(UB LB)$.
- 5. Update iterate

 $x^{k+1} = \min\{ \|x - x^k\|^2 \text{ s.t. } x \in X \text{ and } \overline{\mathcal{L}}(x^i) + \langle \partial \overline{\mathcal{L}}(x^i), x - x^i \rangle \le S, \forall i \le k \}.$

Output: best iterate *x*_{best}

Bundle Proximal Level Method

Algorithm 5 Bundle Proximal Level Method (BPLM) | Lemaréchal et al. (1995)

Parameters: level set parameter $\alpha \in (0, 1)$.

Inputs: box $X = [\pi_{min}, \pi_{max}]^T$, $x^1 \in X$, $UB = +\infty$, $LB = -\infty$, $\Delta = +\infty$, $S' = +\infty$. For k = 1, 2, ..., N perform the following steps:

- 1. Compute oracle, update upper bound, polyhedral model and level set.
- 2. if $UB LB \ge (1 \alpha)\Delta$ then
- 3. Update proximal level set $S' = \min \{S, S'\}$.
- 4. else > Regular level set provides sufficient decrease
- 5. Update proximal level set S' = S and proximal gap $\Delta = UB LB$
- 6. end if
- 7. Update iterate

 $x^{k+1} = \min\{ \|x - x^k\|^2 \text{ s.t. } x \in X \text{ and } \overline{\mathcal{L}}(x^i) + \langle \partial \overline{\mathcal{L}}(x^i), x - x^i \rangle \le \mathcal{S}', \forall i \le k \}.$

Output: best iterate *x*_{best}

Parameter-free methods

Parameter-free: do not require the input of any problem parameters and/or problem classes We considered two methods: D-Adaptation Defazio and Mishchenko (2023) and DowG Khaled et al. (2023).

Key ideas:

- ► For subgradient-based methods, the optimal stepsize depends on unknown quantities: $||x_0 x^*||$ and the Lipschitz constant of the objective
- Normalizing the stepsize (divide by $\sqrt{\sum_{i=0}^{k} ||g^i||^2}$) removes the dependency on the Lipschitz constant
- Parameter-free methods maintain and update a lower bound on the initial distance to circumvent the need for the exact quantity.
- Two regimens in practice: one where the distance estimator is tuning itself automatically and a faster one when an appropriate value has been found.

Parameter-free methods

Algorithm 6 D-Adaptation (DA)

Parameters: initial lower bound D_1 on $||x^1 - x^*||$ **Inputs:** box $X = [\pi_{min}, \pi_{max}]^T$, initial iterate $x^1 \in X$ Initialize $s^1 = 0, y^1 = ||g^1||^{-1}$. For k = 1, 2, ..., N perform the following steps: 1. Select a subgradient $g^k \in \partial \overline{\mathcal{L}}(x^k)$. 2. Compute $s^{k+1} = s^k + D_k g^k$. 3. Compute $\gamma^{k+1} = (\sum_{i=1}^{k} ||g^i||^2)^{-\frac{1}{2}}$. 4. $D_{k+1} = \max\left(D_k, \frac{\gamma^{k+1} \|s^{k+1}\|^2 - \sum_{i \le k} \gamma^i D_i^2 \|g^i\|^2}{2\|s^{k+1}\|}\right).$ 5. Compute $x^{k+1} = P_X (x^k - y^{k+1}s^{k+1})$.

Output: best iterate *x*_{best}

Parameter-free methods

Algorithm 7 Distance over Weighted Gradients (DoWG)

Parameters: initial lower bound d_0 on $||x^1 - x^*||$ **Inputs:** box $X = [\pi_{min}, \pi_{max}]^T$, initial iterate $x^1 \in X$ Initialize $v^0 = 0$.

For k = 1, 2, ..., N perform the following steps:

- 1. Select a subgradient $g^k \in \partial \overline{\mathcal{L}}(x^k)$.
- 2. Compute distance estimator $d_k = \max(d^{k-1}, ||x^k x^1||)$.
- 3. Compute weighted gradient sum $v^k = v^{k-1} + d_k^2 ||g^k||^2$.
- 4. Compute step size $\eta_k = \frac{d_k^2}{\sqrt{\kappa^k}}$.
- 5. Compute step $x^{k+1} = P_X (x^k \eta_k g^k)$.

Output: best iterate *x*_{best}

Smoothing technique

Nonsmooth minimization with a subgradient: necessarily slow. Idea:

Compute a smooth approximation of the problem (with Nesterov's technique)

Apply accelerated gradient method to solve the approximation
 With smoothing parameter *ς*, we have the following approximations:

$$\mathcal{L}_{0,\varsigma}(\pi) = \min_{\mathbf{I}} \sum_{t \in \mathcal{T}} [C_{VOLL}(L_t - l_t) + \pi_t l_t + \frac{\varsigma}{2} \|l_t\|^2]$$
(9)

subject to: $l_t \leq L_t \quad \forall t \in \mathcal{T}.$

$$\mathcal{L}_{g,\varsigma}(\pi) = \min_{(\mathbf{p}, \bar{\mathbf{p}}, \mathbf{u}, \mathbf{v}, \mathbf{w})} \sum_{t \in \mathcal{T}} [C(u_t^g, v_t^g, p_t^g) - \pi_t p_t^g + \frac{\varsigma}{2} \|(\mathbf{p}, \bar{\mathbf{p}}, \mathbf{u}, \mathbf{v}, \mathbf{w})\|^2]$$

$$(10)$$
subject to: $(p^g, \bar{p}^g, u^g, v^g, w^g) \in \operatorname{conv}(\mathcal{P}^g) \quad \forall t \in \mathcal{T}.$

Smoothing technique

Lemma We have :

$$\nabla \tilde{\mathcal{L}}_{\varsigma} = \left[\sum_{g \in \mathcal{G}} (p_{\varsigma,*}^g) - l_{\varsigma}^* \right]$$
(9)

where $p_{\varsigma,*}^g$ and l_{ς}^* are respectively the optimal values of the minimization problems (10) and (9), both unique by strong convexity of the objective functions.

Smoothing-based method

Algorithm 8 Fast (Projected) Gradient Method (FGM) | Nesterov (2005)

Parameters: initial step length η , smoothing parameter ς **Inputs:** box $X = [\pi_{min}, \pi_{max}]^T$, initial iterate $x^1 \in X$ Initialize $y^1 = x^1$.

For k = 1, 2, ..., N perform the following steps:

1. Compute $\nabla \tilde{\mathcal{L}}_{\varsigma}(y^k)$. 2. Compute $x^{k+1} = P_X \left(y^k - \eta \nabla \tilde{\mathcal{L}}_{\varsigma}(y^k) \right)$. 3. Compute $y^{k+1} = x^{k+1} + \frac{k-1}{k+2} (x^{k+1} - x^k)$.

Output: best iterate *x*_{best}

Talk Outline

1. Quick introduction to electricity markets and CH pricing

2. Formulation of the CH pricing problem

3. First-order methods to compute CH prices

4. Numerical experiments

5. Conclusion

Experimental setup

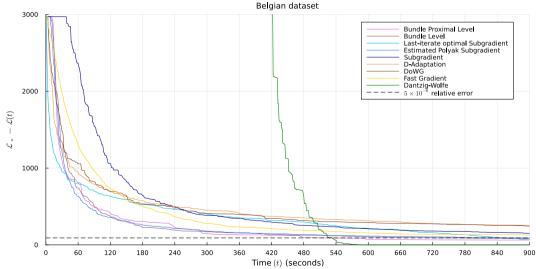
- Full Julia code using JuMP/Gurobi.
- 24 real-world instances:

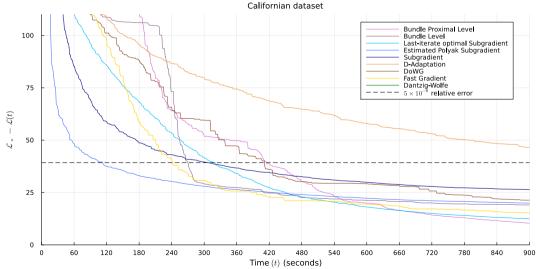
Dataset name	# instances	# generators	# time periods
Belgian	8	68	96
Californian	16	610	48

- Hyperparameter selection: all methods have 1 (critical) hyperparameter to tune. Benchmarks are computed after tuning all methods on one instance per dataset.
- We compute optimal solutions with 10⁻⁹ relative error using the Bundle Level Method.
- Stopping criterion is 15 minutes (time constraint for day-ahead markets)

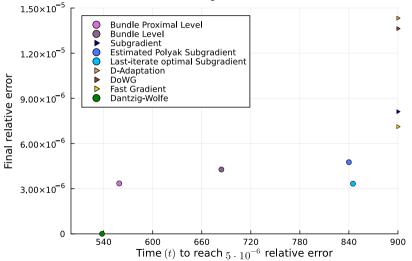
Simple heuristics

- Warm start: we set the first iterate to be the dual variables of the continuous relaxation of the unit commitment problem.
 - Cheap initialization (~ one oracle call)
 - Interpretable: exactly the CH prices in the case where we only have minimum up/down times and constant start-up/shut-down costs.
- Averaging: we return the best iterate between (1) the price iterate which yielded the lowest error during the run and (2) the average of the 10% last iterates.
 - Inexpensive (one oracle call)
 - Can only decrease the objective function
 - In our benchmarks, we typically observe a relative error decrease in the order of 2×10^{-6} .

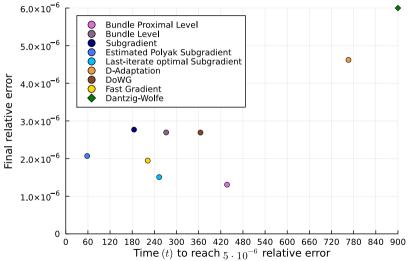




Belgian dataset



Californian dataset



Talk Outline

1. Quick introduction to electricity markets and CH pricing

2. Formulation of the CH pricing problem

3. First-order methods to compute CH prices

4. Numerical experiments

5. Conclusion

Conclusion

Context:

- Computing CH prices is expensive (large MIP)
- Access to a first-order oracle is possible by solving many small MIPs
- We investigate the efficiency of (known) first-order methods for solving the CHP Lagrangian relaxation.

Contributions:

- Clear view on methods traditionaly less used for CH pricing
- Simple heuristics to improve accuracy for practicioners
- Open source Julia toolbox for practicioners and researchers to test methods and investigate a promising pricing rule for electricity markets

Code is available on sofianetanji.com/software

Related publications

Boyd, S., Xiao, L., and Mutapcic, A. (2003). Subgradient methods. *lecture notes of EE3920, Stanford University, Autumn Quarter*, 2004:2004–2005.

Conforti, M., Cornuéjols, G., Zambelli, G., Conforti, M., Cornuéjols, G., and

Zambelli, G. (2014). Integer programming models. Springer.

Defazio, A. and Mishchenko, K. (2023). Learning-rate-free learning by

d-adaptation. In *Proceedings of the 40th International Conference on Machine Learning*.

- Gribik, P. R., Hogan, W. W., Pope, S. L., et al. (2007). Market-clearing electricity prices and energy uplift. *Cambridge, MA*.
- Hua, B. and Baldick, R. (2016). A convex primal formulation for convex hull pricing. *IEEE Transactions on Power Systems*, 32(5):3814–3823.
- Khaled, A., Mishchenko, K., and Jin, C. (2023). Dowg unleashed: An efficient universal parameter-free gradient descent method.
- Lemaréchal, C., Nemirovskii, A., and Nesterov, Y. (1995). New variants of bundle methods. *Mathematical Programming*.