
Snacks: A Fast Large-Scale
Kernel SVM Solver

Sofiane Tanji 1 Andrea Della Vecchia 2 François Glineur 1 Silvia Villa 2

1UCLouvain, Belgium 2Università degli studi di Genova, Italy

European Control Conference, Bucarest, June 2023

1

Context of binary classification
Goal: learn a prediction function f : X → Y given a labeled
training dataset (xi, yi)

n
i=1 where xi ∈ X , yi ∈ Y = {−1,+1} and

such that f(xi) = yi as often as possible for unknown (xi, yi)

f linear f ?
2

From learning to optimization

To achieve this, we aim to solve the following optimization

problem:

min
f∈F

1

n

n∑
i=1

L(yi, f(xi)) +
λ

2
‖f‖22

where:

• L is a loss function (penalizes wrong predictions)

• a quadratic term is added to regularize the problem

3

Talk Outline

Learning with kernels

Tackling the optimization problem

Tackling memory constraints

Numerical experiments

Conclusion

4

Kernel methods to the rescue

Data not linearly separable in input space ?

→ Send data to ”feature” space of higher dimension

• Map data x to
high-dimensional

Hilbert space with

map ϕ : X → H

• Functions f ∈ H are
linear in features

f(x) = 〈f, ϕ(x)〉H
5

A simple example

credit: Julien Mairal, Jean-Philippe Vert

Here, K(x1, x2) = (x>1 x2 + 1)2
6

Kernel methods for learning
• Functions f ∈ H are linear in features i.e.

f(x) = 〈f, ϕ(x)〉H with ϕ potentially infinite-dimensional

• To compare two points in X , compute
K(x, y) = 〈ϕ(x), ϕ(y)〉H

• Complete representation of comparisons between data
points: kernel matrix K = [K(xi, xj)]i,j

• Size of the kernel matrix is n2 where n is the number of
data points

7

From infinite dimensional to finite-dimensional

By the representer theorem, there exists a vector α ∈ Rn such

that:

f(x) =
n∑

i=1

αiK(xi, x)

where f is solution of:

min
f∈H

1

n

n∑
i=1

L(yi, f(xi)) + λ‖f‖2H

8

What this talk is about
This talk is about solving

min
α∈Rn

1

n

n∑
i=1

L(yi, [Kα]i) + λαTKα (1)

where L(yi, [Kα]i) = max(0, 1− yi[Kα]i) is the hinge loss.
And tackling the following issues when solving the above

problem:

• the hinge loss is not smooth

• the kernel matrix is of size n× n: not scalable⚠
9

Take-homemessages so far

1. Learning problem: nonsmooth convex optimization

problem

2. Representer theorem: makes the optimization problem

finite dimensional

3. We want to accelerate optimization and tackle memory

constraints

10

Talk Outline

Learning with kernels

Tackling the optimization problem

Tackling memory constraints

Numerical experiments

Conclusion

11

Nonsmooth optimization methods

The sub-gradient method{
x1 ∈ R

xk+1 = xk − tkg
k where gk ∈ ∂f(xk)

The stochastic sub-gradient method
x1 ∈ R

x(k+1) = x(k) − tkg̃
(k)

where E(g̃(k)|x(k)) = g(k) ∈ ∂f(x(k))

We obtain an ε-optimal solution afterO(ε−2) iterations
12

Restarts to accelerate optimizers
Optimization methods are faster at the beginning:

Figure taken from A. d’Aspremont et al., Acceleration Methods, ArXiv:2101.09545
13

How to restart, which schedule to choose ?
• It depends on: the loss function, the regularizer and the
data.

• In our case, (1) is nonsmooth and sharp with parameter
(µ, r)
• Nonsmoothness: For all u, v, it holds: ‖∂f(u)− ∂f(v)‖ ≤M

• Sharpness: For every x, µ‖x− x∗‖r ≤ f(x)− f(x∗)where
x∗ ∈ arg min f and r = 2

• Optimal and adaptative restart strategies can be found in
[V. Roulet and A. d’Aspremont, Sharpness, Restart,

Acceleration (NIPS 2017)]
14

ASSG: Accelerated Stochastic SubGradient

ASSG→ stochastic subgradient methodwith projections on a

domain that shrinks at each stage of an outer loop (= restarts)

The shrinking parameter is controlled by parameter r of the
sharpness assumption

Two methods to adapt to unknown quantity µ:

• Log-scale grid search on possible schedules [Roulet et al.
(2017)]

• Projections on a domain that shrinks at each stage (ASSG) [Xu

et al. (2017)]

15

Convergence rate for ASSG

For Problem (1), the iteration complexity of ASSG for achieving

an ε-optimal solution with high probability 1− δ is:

O
(

log δ−1

ε

)
Proof in [Xu et al. 2017].

16

Take-homemessages so far

1. Kernel SVM amounts to a nonsmooth optimization

problem

2. Large scale setting: we use stochastic subgradient +

acceleration

3. To accelerate subgradient methods: restarts with domain

shrinking

17

Talk Outline

Learning with kernels

Tackling the optimization problem

Tackling memory constraints

Numerical experiments

Conclusion

18

Problem now scales !

The optimization method has a cheap cost per iteration and a

better convergence rate.

But we still need to store the kernel matrix ! (n× n, may be
huge !) → not possible in large-scale settings !

Solution: Nyström subsampling

• Selectm (withm ≤ n) anchor points among the training
data points.

• We search a solution in the basis formed by the anchor
points, say f̃(x) =

∑m
i=1K(x, x̃i)c̃i ∈ span{Kx̃1

, . . . , Kx̃m}

19

An embedding of the data
Define the embedding

xi 7→ xi = ((K̃)1/2)†(K(x̃1, xi), . . . , K(x̃m, xi))
>

with K̃i,j = K(x̃i, x̃j).

This operation can be computed in O(m3 + nm2CK), with CK

the cost of evaluating one inner product.

SVM formulation with kernel embedding

min
c∈Rm

1

n

n∑
i=1

max(0, 1− yi〈c, xi〉) +
λ

2
‖c‖22 (2)

20

Snacks: ASSG applied to embedded dataset

K: number of restarts,

T: number of iterations per stage,

ω: shrinking coefficient,
D0: initial ball diameter,

η0: initial stepsize,
Picking i uniformly at random:

g(w; ξk,t) =

{
λw − yixi if yi〈w, xi〉 < 1
λw else.

21

How does it work step-by-step ?

1. Given a kernel function, compute the embedding of the

data x.
2. From an initial guess w0, we generate a sequence of outer

iterates wk

3. To do so, T inner iterations are computed wk,1, ..., wk,T .

4. To update wk,t to wk,t+1, we perform the following step:

wk,t+1 ←− ΠB(wk−1,Dk)[w
k,t − ηkg(w

k,t; ξk,t)]

5. At the end of each stage, we shrink the stepsize ηk and the
ball radius Dk by a factor ω.

22

Talk Outline

Learning with kernels

Tackling the optimization problem

Tackling memory constraints

Numerical experiments

Conclusion

23

Datasets considered

Sizes of the original datasets and their corresponding kernel matrix

ijcnn1 a9a MNIST rcv1 SUSY

of points n 5 · 104 5 · 104 6 · 104 7 · 105 5 · 106
of features d 22 123 780 4 · 105 18

Dataset (GiB) 0.01 0.05 0.37 263 0.72
Matrix K (GiB) 20 20 28.8 3900 2 · 105

24

Other state-of-the-art SVM solvers
• LibLinear (on embedded dataset):
Solves the dual formulation (a Quadratic Program) with a

coordinate descent method

• Pegasos (on embedded dataset):
Solves the primal formulation with a stochastic

subgradient method

• ThunderSVM (on full dataset):
Solves the dual formulation with a parallel coordinate

descent method
25

Numerical experiments

a9a,m = 800. Kernel matrix precomputed in 2.2s

a9a Time (s) C-err (optimal = 15.1 %)

LibLinear 39.0 s 15.8 %

ThunderSVM 2.97 s 15.6 %

Pegasos 52.0 s 20.0 %

Snacks 1.01 s 15.2 %

26

Numerical experiments

ijcnn1,m = 5000. Kernel matrix precomputed in 12.9s

ijcnn1 Time (s) C-err (optimal = 1.4 %)

LibLinear 67.1 s 1.8 %

ThunderSVM 31.2 s 1.6 %

Pegasos 1003.5 s 3.0 %

Snacks 1.9 s 1.6 %

27

Numerical experiments

mnist-bin,m = 3000. Kernel matrix precomputed in 31.6s. Metric is F1-score.

mnist-bin Time (s) F1-score (optimal = 0.998)

LibLinear 19.9 s 0.995

ThunderSVM 23.6 s 0.995

Pegasos 91.8 s 0.982

Snacks 14.6 s 0.985

28

Numerical experiments

rcv1,m = 1000. Kernel matrix precomputed in 41.47s.

rcv1 Time (s) C-err (optimal = 97.1 %)

LibLinear 1118 s 91.1 %

ThunderSVM 7779 s 96.9 %

Pegasos 61.3 s 93.7%

Snacks 7.1 s 95.6 %

29

Numerical experiments

SUSY, m = 1000. Kernel matrix precomputed in 74.1s. ThunderSVM was stopped after 24

hours of training.

SUSY Time (s) C-err (optimal = 19.8 %)

LibLinear 9537 s 20.2 %

ThunderSVM NaN NaN

Pegasos 61.2 s 21.2 %

Snacks 1.4 s 20.0 %

30

Restarts accelerate convergence in practice !

Comparison of accelerated primal and standard primal speed of convergence

31

Impact of SVM hyperparameters is limited

Subsampling parameter vs test accuracy Regularization parameter vs test accuracy
32

Talk Outline

Learning with kernels

Tackling the optimization problem

Tackling memory constraints

Numerical experiments

Conclusion

33

Summary and conclusion
Strategies used:
• Nyström subsampling

• Scheduled restarts to accelerate stochastic subgradient
method

Benefits of Snacks:
• Simple implementation

• Handles huge datasets (with competitive runtime)

• Subsampling does not reduce accuracy
34

Snacks is available on Github

Python toolbox available on Github. It:

• follows scikit-learn’s API

• handles large-scale dataset on a laptop with no GPU

• is benchmark-ready, you can easily add other solvers to
compare

https://github.com/sofianetanji/snacks

35

https://github.com/sofianetanji/snacks

Thank you for your attention!

Any questions ?

36

Related papers

Tanji et al. (2023) Snacks: A Fast Large-Scale Kernel SVM

Solver, ECC 2023.

Della Vecchia et al. (2021) Regularized ERM on random

subspaces, AISTATS 2021.

Xu et al. (2017) Stochastic Convex Optimization: Faster

Local Growth Implies Faster Global Convergence, ICML

2017.

37

	Learning with kernels
	Tackling the optimization problem
	Tackling memory constraints
	Numerical experiments
	Conclusion

