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Context of binary classification
Goal: learn a prediction function f : X → Y given a labeled
training dataset (xi, yi)

n
i=1 where xi ∈ X , yi ∈ Y = {−1,+1} and

such that f(xi) = yi as often as possible for unknown (xi, yi)

f linear f ?
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From learning to optimization

To achieve this, we aim to solve the following optimization

problem:

min
f∈F

1

n

n∑
i=1

L(yi, f(xi)) +
λ

2
‖f‖22

where:

• L is a loss function (penalizes wrong predictions)

• a quadratic term is added to regularize the problem

3



Talk Outline

Learning with kernels

Tackling the optimization problem

Tackling memory constraints

Numerical experiments

Conclusion

4



Kernel methods to the rescue

Data not linearly separable in input space ?

→ Send data to ”feature” space of higher dimension

• Map data x to
high-dimensional

Hilbert space with

map ϕ : X → H

• Functions f ∈ H are
linear in features

f(x) = 〈f, ϕ(x)〉H
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A simple example

credit: Julien Mairal, Jean-Philippe Vert

Here, K(x1, x2) = (x>1 x2 + 1)2
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Kernel methods for learning
• Functions f ∈ H are linear in features i.e.

f(x) = 〈f, ϕ(x)〉H with ϕ potentially infinite-dimensional

• To compare two points in X , compute
K(x, y) = 〈ϕ(x), ϕ(y)〉H

• Complete representation of comparisons between data
points: kernel matrix K = [K(xi, xj)]i,j

• Size of the kernel matrix is n2 where n is the number of
data points
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From infinite dimensional to finite-dimensional

By the representer theorem, there exists a vector α ∈ Rn such

that:

f(x) =
n∑

i=1

αiK(xi, x)

where f is solution of:

min
f∈H

1

n

n∑
i=1

L(yi, f(xi)) + λ‖f‖2H
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What this talk is about
This talk is about solving

min
α∈Rn

1

n

n∑
i=1

L(yi, [Kα]i) + λαTKα (1)

where L(yi, [Kα]i) = max(0, 1− yi[Kα]i) is the hinge loss.
And tackling the following issues when solving the above

problem:

• the hinge loss is not smooth

• the kernel matrix is of size n× n: not scalable⚠ 
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Take-homemessages so far

1. Learning problem: nonsmooth convex optimization

problem

2. Representer theorem: makes the optimization problem

finite dimensional

3. We want to accelerate optimization and tackle memory

constraints
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Nonsmooth optimization methods

The sub-gradient method{
x1 ∈ R

xk+1 = xk − tkg
k where gk ∈ ∂f(xk)

The stochastic sub-gradient method
x1 ∈ R

x(k+1) = x(k) − tkg̃
(k)

where E(g̃(k)|x(k)) = g(k) ∈ ∂f(x(k))

We obtain an ε-optimal solution afterO(ε−2) iterations
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Restarts to accelerate optimizers
Optimization methods are faster at the beginning:

Figure taken from A. d’Aspremont et al., Acceleration Methods, ArXiv:2101.09545
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How to restart, which schedule to choose ?
• It depends on: the loss function, the regularizer and the
data.

• In our case, (1) is nonsmooth and sharp with parameter
(µ, r)
• Nonsmoothness: For all u, v, it holds: ‖∂f(u)− ∂f(v)‖ ≤M

• Sharpness: For every x, µ‖x− x∗‖r ≤ f(x)− f(x∗)where
x∗ ∈ arg min f and r = 2

• Optimal and adaptative restart strategies can be found in
[V. Roulet and A. d’Aspremont, Sharpness, Restart,

Acceleration (NIPS 2017)]
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ASSG: Accelerated Stochastic SubGradient

ASSG→ stochastic subgradient methodwith projections on a

domain that shrinks at each stage of an outer loop (= restarts)

The shrinking parameter is controlled by parameter r of the
sharpness assumption

Two methods to adapt to unknown quantity µ:

• Log-scale grid search on possible schedules [Roulet et al.
(2017)]

• Projections on a domain that shrinks at each stage (ASSG) [Xu

et al. (2017)]
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Convergence rate for ASSG

For Problem (1), the iteration complexity of ASSG for achieving

an ε-optimal solution with high probability 1− δ is:

O
(

log δ−1

ε

)
Proof in [Xu et al. 2017].
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Take-homemessages so far

1. Kernel SVM amounts to a nonsmooth optimization

problem

2. Large scale setting: we use stochastic subgradient +

acceleration

3. To accelerate subgradient methods: restarts with domain

shrinking
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Problem now scales !

The optimization method has a cheap cost per iteration and a

better convergence rate.

But we still need to store the kernel matrix ! (n× n, may be
huge !) → not possible in large-scale settings !

Solution: Nyström subsampling

• Selectm (withm ≤ n) anchor points among the training
data points.

• We search a solution in the basis formed by the anchor
points, say f̃(x) =

∑m
i=1K(x, x̃i)c̃i ∈ span{Kx̃1

, . . . , Kx̃m}
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An embedding of the data
Define the embedding

xi 7→ xi = ((K̃)1/2)†(K(x̃1, xi), . . . , K(x̃m, xi))
>

with K̃i,j = K(x̃i, x̃j).

This operation can be computed in O(m3 + nm2CK), with CK

the cost of evaluating one inner product.

SVM formulation with kernel embedding

min
c∈Rm

1

n

n∑
i=1

max(0, 1− yi〈c, xi〉) +
λ

2
‖c‖22 (2)
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Snacks: ASSG applied to embedded dataset

K: number of restarts,

T: number of iterations per stage,

ω: shrinking coefficient,
D0: initial ball diameter,

η0: initial stepsize,
Picking i uniformly at random:

g(w; ξk,t) =

{
λw − yixi if yi〈w, xi〉 < 1
λw else.
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How does it work step-by-step ?

1. Given a kernel function, compute the embedding of the

data x.
2. From an initial guess w0, we generate a sequence of outer

iterates wk

3. To do so, T inner iterations are computed wk,1, ..., wk,T .

4. To update wk,t to wk,t+1, we perform the following step:

wk,t+1 ←− ΠB(wk−1,Dk)[w
k,t − ηkg(w

k,t; ξk,t)]

5. At the end of each stage, we shrink the stepsize ηk and the
ball radius Dk by a factor ω.
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Datasets considered

Sizes of the original datasets and their corresponding kernel matrix

ijcnn1 a9a MNIST rcv1 SUSY

# of points n 5 · 104 5 · 104 6 · 104 7 · 105 5 · 106
# of features d 22 123 780 4 · 105 18

Dataset (GiB) 0.01 0.05 0.37 263 0.72
Matrix K (GiB) 20 20 28.8 3900 2 · 105
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Other state-of-the-art SVM solvers
• LibLinear (on embedded dataset):
Solves the dual formulation (a Quadratic Program) with a

coordinate descent method

• Pegasos (on embedded dataset):
Solves the primal formulation with a stochastic

subgradient method

• ThunderSVM (on full dataset):
Solves the dual formulation with a parallel coordinate

descent method
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Numerical experiments

a9a,m = 800. Kernel matrix precomputed in 2.2s

a9a Time (s) C-err (optimal = 15.1 %)

LibLinear 39.0 s 15.8 %

ThunderSVM 2.97 s 15.6 %

Pegasos 52.0 s 20.0 %

Snacks 1.01 s 15.2 %
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Numerical experiments

ijcnn1,m = 5000. Kernel matrix precomputed in 12.9s

ijcnn1 Time (s) C-err (optimal = 1.4 %)

LibLinear 67.1 s 1.8 %

ThunderSVM 31.2 s 1.6 %

Pegasos 1003.5 s 3.0 %

Snacks 1.9 s 1.6 %
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Numerical experiments

mnist-bin,m = 3000. Kernel matrix precomputed in 31.6s. Metric is F1-score.

mnist-bin Time (s) F1-score (optimal = 0.998)

LibLinear 19.9 s 0.995

ThunderSVM 23.6 s 0.995

Pegasos 91.8 s 0.982

Snacks 14.6 s 0.985
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Numerical experiments

rcv1,m = 1000. Kernel matrix precomputed in 41.47s.

rcv1 Time (s) C-err (optimal = 97.1 %)

LibLinear 1118 s 91.1 %

ThunderSVM 7779 s 96.9 %

Pegasos 61.3 s 93.7%

Snacks 7.1 s 95.6 %
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Numerical experiments

SUSY, m = 1000. Kernel matrix precomputed in 74.1s. ThunderSVM was stopped after 24

hours of training.

SUSY Time (s) C-err (optimal = 19.8 %)

LibLinear 9537 s 20.2 %

ThunderSVM NaN NaN

Pegasos 61.2 s 21.2 %

Snacks 1.4 s 20.0 %
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Restarts accelerate convergence in practice !

Comparison of accelerated primal and standard primal speed of convergence
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Impact of SVM hyperparameters is limited

Subsampling parameter vs test accuracy Regularization parameter vs test accuracy
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Summary and conclusion
Strategies used:
• Nyström subsampling

• Scheduled restarts to accelerate stochastic subgradient
method

Benefits of Snacks:
• Simple implementation

• Handles huge datasets (with competitive runtime)

• Subsampling does not reduce accuracy
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Snacks is available on Github

Python toolbox available on Github. It:

• follows scikit-learn’s API

• handles large-scale dataset on a laptop with no GPU

• is benchmark-ready, you can easily add other solvers to
compare

https://github.com/sofianetanji/snacks
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Thank you for your attention!

Any questions ?
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