A principled approach to automatically recommend

B UCLouvain

optimization methods

Sofiane Taniji, Francois Glineur
UCLouvain

sofiane.tanji@uclouvain.be

|
\ Ee{:ormulatioa
AN >

n

—_

POSTER SLIDES
Our approach to recommend optimization methods
Computing reformulations 'T'emplate retrieval Results retrieval
Olf\hl’\e :l >Ee{:ormu|atioﬂ\\/ »@{(\\ \‘1
recommendation : f i 1 J: : {6) () m2 :
WOY’I(‘F[OW : : reForMulatiopi / 1 m
: | g g 2 i ’X [h : ramldng
: J CED -
[user problem]% : _ W, 1 1. M3
: : ~ ~ | | 2. M2
: | |
| | !
| | 1
| I

Offline database

Sl
| \
| I \
| | N o - calculus
I | mlese‘t
I |
I

|

| r‘e'por‘mulat?on

: tricks

|

|

|

\

LI G G S S G G G I S — — —

Context

@ @ @

set of optimization
templates

—-

set of optimiza\‘tion
methods

e = _» _» _» _» _®» _=» _=

[E=D)cED)cEn)civ)cEo)
l. |

set of known results

Find the best methods to efficiently solve the general problem

min
XEX

f(x)

(OPT)

where f is composed of multiple subfunctions f;, linked by common operators and

involving multiple variables.

/

Finding new formulations

Ingredients used to compute new reformulations

1. Elementary reformulation operations: commutativity of operators,

reparametrization, transfer of conditioning, losing structure etc.

2. Calculus ruleset: gradient/subgradient/prox/Fenchel calculus etc.

> FEach f; satisfy at least one assumption (L-Lipschitz gradient, convexity etc.)

> We access each f; through black-box oracles (gradient, proximal operator etc.)

Problem representation

min f(x) + g(A(x))

XER"

»f : R" — R is convex, Ls~smooth. Access to V.

> g : R" — R is convex. Access to proxg.

> A:R” — R™is a linear mapping with [|A|| < M. Access to x — Ax.

fvr

Convex and Le-Smooth

Convex

A x = Ax X

Linear and [|A|| < M

Code example

b = Problem()
pb.declare_function("f", Rn,
pb.declare_function("g", Rn,
pb.declare_function("A", Rn,
pb.declare_variable("x", Rn)
.add_property(Convex())
.add_property (Smooth(0, 10.))
.add_property(Convex())
.add_property(Linear (0, 5.))
pb.declare_oracle(Derivative(f))
pb.declare_oracle(Proximal (g))
pb.declare_oracle(LinearMap(A))
pb.set_objective(f(x) + g(A(x)))

=09 H H X =00 H T

R)
R)
Rn)

Compute (many) reformulations automatically by applying above tools to the
original problem recursively

Database of known results

Claim: All convergence theorems have the following form

Theorem (informal): Worst-case convergence rate of Algorithm 1

Suppose assumptions A = {Al, A2, A3} hold. Consider initial conditions Z.

Then, Algorithm 1 with parameters P applied to Problem (1) satisfies for all
k>1
Fixi) = F(x7) < ok, A, Z, P) (2)

meaning we have to encode 3 elements : Template problem, Method pa-
rameters, Convergence rate.

Template problem: a "common' optimization problem for which researchers
provided convergence guarantees

Method parameters: any parameter appearing in the rate function, potentially
based on an unknown quantity (L, ...)

Convergence rate: a performance measure and a function upper bounding it
as tightly as possible.

A ranking assistant

We rank optimization methods with a four-step approach:

1. Automatic computation of reformulations

2. Template retrieval: Match reformulations to known templates

3. Results retrieval: Query the database for all results associated to matched

templates

4. Ordering methods: Compare retrieved convergence rates using heuristics

= Drop asymptotically worse methods if iteration budget is high
« Compare leading coeflicients
= Sample parameter values (if unknown) in provided range, allowing rate estimation

